Suppr超能文献

通过视觉运动平滑实现仿生的图形-背景区分。

Bioinspired figure-ground discrimination via visual motion smoothing.

机构信息

School of Life Sciences, Shanghai University, Shanghai, China.

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

出版信息

PLoS Comput Biol. 2023 Apr 21;19(4):e1011077. doi: 10.1371/journal.pcbi.1011077. eCollection 2023 Apr.

Abstract

Flies detect and track moving targets among visual clutter, and this process mainly relies on visual motion. Visual motion is analyzed or computed with the pathway from the retina to T4/T5 cells. The computation of local directional motion was formulated as an elementary movement detector (EMD) model more than half a century ago. Solving target detection or figure-ground discrimination problems can be equivalent to extracting boundaries between a target and the background based on the motion discontinuities in the output of a retinotopic array of EMDs. Individual EMDs cannot measure true velocities, however, due to their sensitivity to pattern properties such as luminance contrast and spatial frequency content. It remains unclear how local directional motion signals are further integrated to enable figure-ground discrimination. Here, we present a computational model inspired by fly motion vision. Simulations suggest that the heavily fluctuating output of an EMD array is naturally surmounted by a lobula network, which is hypothesized to be downstream of the local motion detectors and have parallel pathways with distinct directional selectivity. The lobula network carries out a spatiotemporal smoothing operation for visual motion, especially across time, enabling the segmentation of moving figures from the background. The model qualitatively reproduces experimental observations in the visually evoked response characteristics of one type of lobula columnar (LC) cell. The model is further shown to be robust to natural scene variability. Our results suggest that the lobula is involved in local motion-based target detection.

摘要

苍蝇在视觉杂乱中检测和跟踪移动目标,这个过程主要依赖于视觉运动。视觉运动是通过从视网膜到 T4/T5 细胞的途径进行分析或计算的。局部方向运动的计算早在半个多世纪前就被表述为一个基本运动检测器(EMD)模型。解决目标检测或图形-背景辨别问题,可以等同于根据 EMD 视网膜映射数组输出中的运动不连续性,提取目标和背景之间的边界。然而,由于单个 EMD 对亮度对比度和空间频率内容等图案属性敏感,因此无法测量真实速度。目前尚不清楚如何进一步整合局部方向运动信号以实现图形-背景辨别。在这里,我们提出了一个受苍蝇运动视觉启发的计算模型。模拟表明,EMD 数组的剧烈波动输出自然会被一个外侧神经节复合神经元网络克服,外侧神经节复合神经元网络被假设为局部运动探测器的下游,具有不同方向选择性的平行途径。外侧神经节复合神经元网络对视觉运动进行时空平滑操作,特别是在时间上,从而将运动图形与背景分离。该模型定性地再现了一种外侧神经节柱状(LC)细胞的视觉诱发反应特性的实验观察结果。该模型进一步被证明对自然场景变化具有鲁棒性。我们的结果表明,外侧神经节参与了基于局部运动的目标检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd32/10155969/0e2d4bb3647e/pcbi.1011077.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验