Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.
Department of Statistics and Data Science, Yale University, New Haven, United States.
Elife. 2022 Jan 13;11:e72067. doi: 10.7554/eLife.72067.
Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of , we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.
动物已经进化出了复杂的视觉回路,以解决一个至关重要的推理问题:检测视觉信号是否对应于一个迎面而来的物体。这些事件是通过特定的对视觉逼近敏感的回路来检测的,或者是通过对物体大小增加敏感的回路来检测的。已经为这些回路开发了各种计算模型,但碰撞检测推理问题本身如何影响这些回路的计算结构仍然未知。在这里,受 的视觉系统中 LPLC2 神经元的独特结构的启发,我们构建了具有解剖约束的浅层神经网络模型,并对其进行训练,以识别与即将发生的碰撞相对应的视觉信号。令人惊讶的是,优化结果只有两种截然不同的、相反的解决方案,其中只有一种与 LPLC2 神经元的实际树突权重相匹配。当群体规模足够大时,这两种解决方案都可以以很高的准确率解决推理问题。LPLC2 样的解决方案再现了许多刺激下实验观察到的 LPLC2 神经元的反应,甚至再现了对逼近敏感的神经元的典型调谐,尽管模型从未在神经数据上进行过训练。因此,LPLC2 神经元的特性和调谐是通过优化一个受解剖约束的神经网络来检测即将发生的碰撞来预测的。更一般地说,这些结果说明了优化对动物感知目标很重要的推理任务如何揭示和解释特定感觉神经元的计算特性。