文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的罕见癌症患者总体生存预测模型:以原发性中枢神经系统淋巴瘤为例。

Deep learning-based overall survival prediction model in patients with rare cancer: a case study for primary central nervous system lymphoma.

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Department of Mathematics and Computer Science, University of Calabria, Rende, Italy.

出版信息

Int J Comput Assist Radiol Surg. 2023 Oct;18(10):1849-1856. doi: 10.1007/s11548-023-02886-2. Epub 2023 Apr 21.


DOI:10.1007/s11548-023-02886-2
PMID:37083973
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10497660/
Abstract

PURPOSE: Primary central nervous system lymphoma (PCNSL) is a rare, aggressive form of extranodal non-Hodgkin lymphoma. To predict the overall survival (OS) in advance is of utmost importance as it has the potential to aid clinical decision-making. Though radiomics-based machine learning (ML) has demonstrated the promising performance in PCNSL, it demands large amounts of manual feature extraction efforts from magnetic resonance images beforehand. deep learning (DL) overcomes this limitation. METHODS: In this paper, we tailored the 3D ResNet to predict the OS of patients with PCNSL. To overcome the limitation of data sparsity, we introduced data augmentation and transfer learning, and we evaluated the results using r stratified k-fold cross-validation. To explain the results of our model, gradient-weighted class activation mapping was applied. RESULTS: We obtained the best performance (the standard error) on post-contrast T1-weighted (T1Gd)-area under curve [Formula: see text], accuracy [Formula: see text], precision [Formula: see text], recall [Formula: see text] and F1-score [Formula: see text], while compared with ML-based models on clinical data and radiomics data, respectively, further confirming the stability of our model. Also, we observed that PCNSL is a whole-brain disease and in the cases where the OS is less than 1 year, it is more difficult to distinguish the tumor boundary from the normal part of the brain, which is consistent with the clinical outcome. CONCLUSIONS: All these findings indicate that T1Gd can improve prognosis predictions of patients with PCNSL. To the best of our knowledge, this is the first time to use DL to explain model patterns in OS classification of patients with PCNSL. Future work would involve collecting more data of patients with PCNSL, or additional retrospective studies on different patient populations with rare diseases, to further promote the clinical role of our model.

摘要

目的:原发性中枢神经系统淋巴瘤(PCNSL)是一种罕见的、侵袭性的结外非霍奇金淋巴瘤。提前预测总生存期(OS)至关重要,因为它有可能辅助临床决策。虽然基于放射组学的机器学习(ML)已在 PCNSL 中显示出良好的性能,但它需要在磁共振成像(MRI)前进行大量的手动特征提取工作。深度学习(DL)克服了这一限制。

方法:在本文中,我们将 3D ResNet 进行定制,以预测 PCNSL 患者的 OS。为了克服数据稀疏性的限制,我们引入了数据增强和迁移学习,并使用 r 分层 k 折交叉验证来评估结果。为了解释我们模型的结果,应用了梯度加权类激活映射。

结果:与基于 ML 的模型分别在临床数据和放射组学数据上进行比较时,我们在对比增强 T1 加权(T1Gd)-曲线下面积 [公式:见文本]、准确性 [公式:见文本]、精度 [公式:见文本]、召回率 [公式:见文本] 和 F1 得分 [公式:见文本] 方面获得了最佳性能(标准误差),进一步证实了我们模型的稳定性。此外,我们观察到 PCNSL 是一种全脑疾病,在 OS 小于 1 年的情况下,更难从大脑正常部分区分肿瘤边界,这与临床结果一致。

结论:所有这些发现表明 T1Gd 可以改善 PCNSL 患者的预后预测。据我们所知,这是首次使用 DL 来解释 PCNSL 患者 OS 分类模型模式。未来的工作将涉及收集更多 PCNSL 患者的数据,或对不同罕见疾病患者群体进行额外的回顾性研究,以进一步促进我们模型的临床作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/c3dfe86aaea3/11548_2023_2886_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/ef51cea794df/11548_2023_2886_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/ae03c194bcf6/11548_2023_2886_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/c3dfe86aaea3/11548_2023_2886_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/ef51cea794df/11548_2023_2886_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/ae03c194bcf6/11548_2023_2886_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/10497660/c3dfe86aaea3/11548_2023_2886_Fig3_HTML.jpg

相似文献

[1]
Deep learning-based overall survival prediction model in patients with rare cancer: a case study for primary central nervous system lymphoma.

Int J Comput Assist Radiol Surg. 2023-10

[2]
Interpreting deep learning models for glioma survival classification using visualization and textual explanations.

BMC Med Inform Decis Mak. 2023-10-18

[3]
Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.

Eur Radiol. 2018-4-6

[4]
Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.

Neuroradiology. 2018-12

[5]
Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis.

Neurosurg Focus. 2018-11-1

[6]
Radiomic prediction for durable response to high-dose methotrexate-based chemotherapy in primary central nervous system lymphoma.

Cancer Med. 2024-9

[7]
Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput SIFT features.

Int J Neurosci. 2018-7

[8]
Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.

J Magn Reson Imaging. 2021-9

[9]
Pretreatment Hemoglobin as an Independent Prognostic Factor in Primary Central Nervous System Lymphomas.

Oncologist. 2019-3-13

[10]
Radiomics-Based Machine Learning Model for Predicting Overall and Progression-Free Survival in Rare Cancer: A Case Study for Primary CNS Lymphoma Patients.

Bioengineering (Basel). 2023-2-22

引用本文的文献

[1]
AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions.

Cancers (Basel). 2025-8-11

[2]
Development and Validation of Survival Prediction Models for Patients With Pineoblastomas Using Deep Learning: A SEER-Based Study.

Cancer Rep (Hoboken). 2025-8

[3]
MRI-Based Machine Learning for Prediction of Clinical Outcomes in Primary Central Nervous System Lymphoma.

Life (Basel). 2024-10-11

本文引用的文献

[1]
Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images.

Comput Methods Programs Biomed. 2021-6

[2]
Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.

J Neurosci Methods. 2021-4-1

[3]
The Biological Meaning of Radiomic Features.

Radiology. 2021-3

[4]
Deep learning-based classification of primary bone tumors on radiographs: A preliminary study.

EBioMedicine. 2020-12

[5]
Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma.

Front Oncol. 2020-9-15

[6]
Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma.

J Appl Clin Med Phys. 2019-12-27

[7]
Robustness of Radiomics for Survival Prediction of Brain Tumor Patients Depending on Resection Status.

Front Comput Neurosci. 2019-11-8

[8]
MRI as a diagnostic biomarker for differentiating primary central nervous system lymphoma from glioblastoma: A systematic review and meta-analysis.

J Magn Reson Imaging. 2019-1-14

[9]
Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis.

Neurosurg Focus. 2018-11-1

[10]
Concussion classification via deep learning using whole-brain white matter fiber strains.

PLoS One. 2018-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索