Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
Department of Mathematics and Computer Science, University of Calabria, Rende, Italy.
Int J Comput Assist Radiol Surg. 2023 Oct;18(10):1849-1856. doi: 10.1007/s11548-023-02886-2. Epub 2023 Apr 21.
PURPOSE: Primary central nervous system lymphoma (PCNSL) is a rare, aggressive form of extranodal non-Hodgkin lymphoma. To predict the overall survival (OS) in advance is of utmost importance as it has the potential to aid clinical decision-making. Though radiomics-based machine learning (ML) has demonstrated the promising performance in PCNSL, it demands large amounts of manual feature extraction efforts from magnetic resonance images beforehand. deep learning (DL) overcomes this limitation. METHODS: In this paper, we tailored the 3D ResNet to predict the OS of patients with PCNSL. To overcome the limitation of data sparsity, we introduced data augmentation and transfer learning, and we evaluated the results using r stratified k-fold cross-validation. To explain the results of our model, gradient-weighted class activation mapping was applied. RESULTS: We obtained the best performance (the standard error) on post-contrast T1-weighted (T1Gd)-area under curve [Formula: see text], accuracy [Formula: see text], precision [Formula: see text], recall [Formula: see text] and F1-score [Formula: see text], while compared with ML-based models on clinical data and radiomics data, respectively, further confirming the stability of our model. Also, we observed that PCNSL is a whole-brain disease and in the cases where the OS is less than 1 year, it is more difficult to distinguish the tumor boundary from the normal part of the brain, which is consistent with the clinical outcome. CONCLUSIONS: All these findings indicate that T1Gd can improve prognosis predictions of patients with PCNSL. To the best of our knowledge, this is the first time to use DL to explain model patterns in OS classification of patients with PCNSL. Future work would involve collecting more data of patients with PCNSL, or additional retrospective studies on different patient populations with rare diseases, to further promote the clinical role of our model.
目的:原发性中枢神经系统淋巴瘤(PCNSL)是一种罕见的、侵袭性的结外非霍奇金淋巴瘤。提前预测总生存期(OS)至关重要,因为它有可能辅助临床决策。虽然基于放射组学的机器学习(ML)已在 PCNSL 中显示出良好的性能,但它需要在磁共振成像(MRI)前进行大量的手动特征提取工作。深度学习(DL)克服了这一限制。
方法:在本文中,我们将 3D ResNet 进行定制,以预测 PCNSL 患者的 OS。为了克服数据稀疏性的限制,我们引入了数据增强和迁移学习,并使用 r 分层 k 折交叉验证来评估结果。为了解释我们模型的结果,应用了梯度加权类激活映射。
结果:与基于 ML 的模型分别在临床数据和放射组学数据上进行比较时,我们在对比增强 T1 加权(T1Gd)-曲线下面积 [公式:见文本]、准确性 [公式:见文本]、精度 [公式:见文本]、召回率 [公式:见文本] 和 F1 得分 [公式:见文本] 方面获得了最佳性能(标准误差),进一步证实了我们模型的稳定性。此外,我们观察到 PCNSL 是一种全脑疾病,在 OS 小于 1 年的情况下,更难从大脑正常部分区分肿瘤边界,这与临床结果一致。
结论:所有这些发现表明 T1Gd 可以改善 PCNSL 患者的预后预测。据我们所知,这是首次使用 DL 来解释 PCNSL 患者 OS 分类模型模式。未来的工作将涉及收集更多 PCNSL 患者的数据,或对不同罕见疾病患者群体进行额外的回顾性研究,以进一步促进我们模型的临床作用。
Int J Comput Assist Radiol Surg. 2023-10
BMC Med Inform Decis Mak. 2023-10-18
Comput Methods Programs Biomed. 2021-6
Radiology. 2021-3
Front Comput Neurosci. 2019-11-8