Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.
Sci Rep. 2023 Apr 21;13(1):6531. doi: 10.1038/s41598-023-33045-x.
Providing an accurate prognosis for individual dementia patients remains a challenge since they greatly differ in rates of cognitive decline. In this study, we used machine learning techniques with the aim to identify cerebrospinal fluid (CSF) biomarkers that predict the rate of cognitive decline within dementia patients. First, longitudinal mini-mental state examination scores (MMSE) of 210 dementia patients were used to create fast and slow progression groups. Second, we trained random forest classifiers on CSF proteomic profiles and obtained a well-performing prediction model for the progression group (ROC-AUC = 0.82). As a third step, Shapley values and Gini feature importance measures were used to interpret the model performance and identify top biomarker candidates for predicting the rate of cognitive decline. Finally, we explored the potential for each of the 20 top candidates in internal sensitivity analyses. TNFRSF4 and TGF [Formula: see text]-1 emerged as the top markers, being lower in fast-progressing patients compared to slow-progressing patients. Proteins of which a low concentration was associated with fast progression were enriched for cell signalling and immune response pathways. None of our top markers stood out as strong individual predictors of subsequent cognitive decline. This could be explained by small effect sizes per protein and biological heterogeneity among dementia patients. Taken together, this study presents a novel progression biomarker identification framework and protein leads for personalised prediction of cognitive decline in dementia.
为个体痴呆患者提供准确的预后仍然是一个挑战,因为他们的认知下降速度有很大差异。在这项研究中,我们使用机器学习技术,旨在识别预测痴呆患者认知下降速度的脑脊液(CSF)生物标志物。首先,我们使用 210 名痴呆患者的纵向简易精神状态检查评分(MMSE)创建快速和缓慢进展组。其次,我们在 CSF 蛋白质组谱上训练随机森林分类器,并为进展组获得了性能良好的预测模型(ROC-AUC=0.82)。作为第三步,使用 Shapley 值和基尼特征重要性度量来解释模型性能并确定预测认知下降速度的顶级生物标志物候选物。最后,我们在内部敏感性分析中探索了每个前 20 个候选物的潜力。TNFRSF4 和 TGF-β1 作为顶级标志物脱颖而出,与进展缓慢的患者相比,快速进展的患者中这些标志物的含量较低。与快速进展相关的低浓度蛋白质富含细胞信号和免疫反应途径。我们的顶级标志物中没有一个是随后认知能力下降的强有力的个体预测因子。这可以用每个蛋白质的小效应大小和痴呆患者之间的生物学异质性来解释。总之,这项研究提出了一种新的进展生物标志物识别框架和用于痴呆患者认知下降个体化预测的蛋白质线索。