Suppr超能文献

六方密排铍中氢和氦的捕获

Hydrogen and helium trapping in hcp beryllium.

作者信息

Zimber Nikolai, Lammer Judith, Vladimirov Pavel, Kothleitner Gerald, Keast Vicki J, Dürrschnabel Michael, Klimenkov Michael

机构信息

Karlsruhe Institute of Technology (KIT), Institute for Applied Materials - Applied Materials Physics (IAM-AWP), Eggenstein-Leopoldshafen, Germany.

Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology & Graz Centre for Electron Microscopy (ZFE), Graz, Austria.

出版信息

Commun Chem. 2023 Apr 21;6(1):76. doi: 10.1038/s42004-023-00877-7.

Abstract

Even though hydrogen-metal surface interactions play an important role in energy technologies and metal corrosion, a thorough understanding of these interactions at the nanoscale remains elusive due to obstructive detection limits in instrumentation and the volatility of pure hydrogen. In the present paper we use analytical spectroscopy in TEM to show that hydrogen adsorbs directly at the (0001) surfaces of hexagonal helium bubbles within neutron irradiated beryllium. In addition to hydrogen, we also found Al, Si and Mg at the beryllium-bubble interfaces. The strong attraction of these elements to (0001) surfaces is underlined with ab-initio calculations. In situ TEM heating experiments reveal that hydrogen can desorb from the bubble walls at T ≥ 400 °C if the helium content is reduced by opening the bubbles. Based on our results we suggest the formation of a complex hydride consisting of up to five elements with a remarkably high decomposition temperature. These results therefore promise novel insights into metal-hydrogen interaction behavior and are invaluable for the safety of future fusion power plants.

摘要

尽管氢与金属表面的相互作用在能源技术和金属腐蚀中起着重要作用,但由于仪器检测极限的阻碍以及纯氢的挥发性,对这些相互作用在纳米尺度上的全面理解仍然难以实现。在本文中,我们利用透射电子显微镜中的分析光谱表明,氢直接吸附在中子辐照铍中六边形氦泡的(0001)表面上。除了氢,我们还在铍 - 泡界面处发现了铝、硅和镁。从头算计算强调了这些元素对(0001)表面的强烈吸引力。原位透射电子显微镜加热实验表明,如果通过打开气泡降低氦含量,氢在T≥400°C时可以从气泡壁上解吸。基于我们的结果,我们提出形成一种由多达五种元素组成的复合氢化物,其分解温度非常高。因此,这些结果有望为金属 - 氢相互作用行为提供新的见解,并且对于未来聚变发电厂的安全至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb46/10121688/d4e01c549bc8/42004_2023_877_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验