Suppr超能文献

基于可解释机器学习模型的男性乳腺癌患者远处转移风险预测。

The prediction of distant metastasis risk for male breast cancer patients based on an interpretable machine learning model.

机构信息

Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.

出版信息

BMC Med Inform Decis Mak. 2023 Apr 21;23(1):74. doi: 10.1186/s12911-023-02166-8.

Abstract

OBJECTIVES

This research was designed to compare the ability of different machine learning (ML) models and nomogram to predict distant metastasis in male breast cancer (MBC) patients and to interpret the optimal ML model by SHapley Additive exPlanations (SHAP) framework.

METHODS

Four powerful ML models were developed using data from male breast cancer (MBC) patients in the SEER database between 2010 and 2015 and MBC patients from our hospital between 2010 and 2020. The area under curve (AUC) and Brier score were used to assess the capacity of different models. The Delong test was applied to compare the performance of the models. Univariable and multivariable analysis were conducted using logistic regression.

RESULTS

Of 2351 patients were analyzed; 168 (7.1%) had distant metastasis (M1); 117 (5.0%) had bone metastasis, and 71 (3.0%) had lung metastasis. The median age at diagnosis is 68.0 years old. Most patients did not receive radiotherapy (1723, 73.3%) or chemotherapy (1447, 61.5%). The XGB model was the best ML model for predicting M1 in MBC patients. It showed the largest AUC value in the tenfold cross validation (AUC:0.884; SD:0.02), training (AUC:0.907; 95% CI: 0.899-0.917), testing (AUC:0.827; 95% CI: 0.802-0.857) and external validation (AUC:0.754; 95% CI: 0.739-0.771) sets. It also showed powerful ability in the prediction of bone metastasis (AUC: 0.880, 95% CI: 0.856-0.903 in the training set; AUC: 0.823, 95% CI:0.790-0.848 in the test set; AUC: 0.747, 95% CI: 0.727-0.764 in the external validation set) and lung metastasis (AUC: 0.906, 95% CI: 0.877-0.928 in training set; AUC: 0.859, 95% CI: 0.816-0.891 in the test set; AUC: 0.756, 95% CI: 0.732-0.777 in the external validation set). The AUC value of the XGB model was larger than that of nomogram in the training (0.907 vs 0.802) and external validation (0.754 vs 0.706) sets.

CONCLUSIONS

The XGB model is a better predictor of distant metastasis among MBC patients than other ML models and nomogram; furthermore, the XGB model is a powerful model for predicting bone and lung metastasis. Combining with SHAP values, it could help doctors intuitively understand the impact of each variable on outcome.

摘要

目的

本研究旨在比较不同机器学习(ML)模型和列线图预测男性乳腺癌(MBC)患者远处转移的能力,并通过 SHapley Additive exPlanations(SHAP)框架解释最佳 ML 模型。

方法

使用 2010 年至 2015 年 SEER 数据库中男性乳腺癌(MBC)患者和 2010 年至 2020 年我院 MBC 患者的数据,开发了四种强大的 ML 模型。使用曲线下面积(AUC)和 Brier 评分评估不同模型的能力。采用 Delong 检验比较模型的性能。使用逻辑回归进行单变量和多变量分析。

结果

对 2351 例患者进行了分析;168 例(7.1%)发生远处转移(M1);117 例(5.0%)发生骨转移,71 例(3.0%)发生肺转移。中位诊断年龄为 68.0 岁。大多数患者未接受放疗(1723 例,73.3%)或化疗(1447 例,61.5%)。XGB 模型是预测 MBC 患者 M1 的最佳 ML 模型。它在十折交叉验证中显示出最大的 AUC 值(AUC:0.884;SD:0.02)、训练(AUC:0.907;95%CI:0.899-0.917)、测试(AUC:0.827;95%CI:0.802-0.857)和外部验证(AUC:0.754;95%CI:0.739-0.771)集。它在骨转移(训练集中 AUC:0.880,95%CI:0.856-0.903;测试集中 AUC:0.823,95%CI:0.790-0.848;外部验证集中 AUC:0.747,95%CI:0.727-0.764)和肺转移(训练集中 AUC:0.906,95%CI:0.877-0.928;测试集中 AUC:0.859,95%CI:0.816-0.891;外部验证集中 AUC:0.756,95%CI:0.732-0.777)的预测中也表现出强大的能力。XGB 模型的 AUC 值在训练集(0.907 对 0.802)和外部验证集(0.754 对 0.706)中均大于列线图。

结论

XGB 模型是预测 MBC 患者远处转移的较好模型,优于其他 ML 模型和列线图;此外,XGB 模型是预测骨转移和肺转移的强大模型。结合 SHAP 值,可以帮助医生直观地了解每个变量对结果的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc12/10120176/05988531bf3c/12911_2023_2166_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验