Suppr超能文献

基于特定尺寸批归一化的轻量级多尺度胸片分类。

Lightweight multi-scale classification of chest radiographs via size-specific batch normalization.

机构信息

Faculty of Engineering of the University of Porto, Portugal; Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), Portugal.

Hospital Center of Vila Nova de Gaia / Espinho, Portugal.

出版信息

Comput Methods Programs Biomed. 2023 Jun;236:107558. doi: 10.1016/j.cmpb.2023.107558. Epub 2023 Apr 18.

Abstract

BACKGROUND AND OBJECTIVE

Convolutional neural networks are widely used to detect radiological findings in chest radiographs. Standard architectures are optimized for images of relatively small size (for example, 224 × 224 pixels), which suffices for most application domains. However, in medical imaging, larger inputs are often necessary to analyze disease patterns. A single scan can display multiple types of radiological findings varying greatly in size, and most models do not explicitly account for this. For a given network, whose layers have fixed-size receptive fields, smaller input images result in coarser features, which better characterize larger objects in an image. In contrast, larger inputs result in finer grained features, beneficial for the analysis of smaller objects. By compromising to a single resolution, existing frameworks fail to acknowledge that the ideal input size will not necessarily be the same for classifying every pathology of a scan. The goal of our work is to address this shortcoming by proposing a lightweight framework for multi-scale classification of chest radiographs, where finer and coarser features are combined in a parameter-efficient fashion.

METHODS

We experiment on CheXpert, a large chest X-ray database. A lightweight multi-resolution (224 × 224, 448 × 448 and 896 × 896 pixels) network is developed based on a Densenet-121 model where batch normalization layers are replaced with the proposed size-specific batch normalization. Each input size undergoes batch normalization with dedicated scale and shift parameters, while the remaining parameters are shared across sizes. Additional external validation of the proposed approach is performed on the VinDr-CXR data set.

RESULTS

The proposed approach (AUC 83.27±0.17, 7.1M parameters) outperforms standard single-scale models (AUC 81.76±0.18, 82.62±0.11 and 82.39±0.13 for input sizes 224 × 224, 448 × 448 and 896 × 896, respectively, 6.9M parameters). It also achieves a performance similar to an ensemble of one individual model per scale (AUC 83.27±0.11, 20.9M parameters), while relying on significantly fewer parameters. The model leverages features of different granularities, resulting in a more accurate classification of all findings, regardless of their size, highlighting the advantages of this approach.

CONCLUSIONS

Different chest X-ray findings are better classified at different scales. Our study shows that multi-scale features can be obtained with nearly no additional parameters, boosting performance.

摘要

背景与目的

卷积神经网络广泛用于检测胸部 X 光片的放射学发现。标准架构针对相对较小尺寸的图像(例如,224×224 像素)进行了优化,这足以满足大多数应用领域的需求。然而,在医学成像中,通常需要更大的输入来分析疾病模式。单个扫描可以显示多种类型的放射学发现,其大小差异很大,并且大多数模型并未明确对此进行考虑。对于给定的网络,其层具有固定大小的感受野,较小的输入图像会导致特征更粗糙,从而更好地描述图像中的较大对象。相比之下,较大的输入会产生更精细的特征,有利于分析较小的对象。由于妥协到单个分辨率,现有框架无法承认,对扫描的每种病理进行分类的理想输入大小不一定相同。我们的工作目标是通过提出一种用于胸部 X 光片多尺度分类的轻量级框架来解决这一缺点,该框架以参数有效的方式组合了更精细和更粗糙的特征。

方法

我们在大型胸部 X 射线数据库 CheXpert 上进行实验。基于 Densenet-121 模型开发了一个轻量级多分辨率(224×224、448×448 和 896×896 像素)网络,其中批量归一化层被我们提出的特定尺寸批量归一化所取代。每个输入尺寸都使用专用的比例和偏移参数进行批量归一化,而其余参数在各个尺寸之间共享。我们还在 VinDr-CXR 数据集上对所提出方法进行了额外的外部验证。

结果

所提出的方法(AUC 83.27±0.17,7.1M 参数)优于标准单尺度模型(输入尺寸为 224×224、448×448 和 896×896 时的 AUC 分别为 81.76±0.18、82.62±0.11 和 82.39±0.13,参数为 6.9M)。它还实现了与每个尺度的单个模型集合相当的性能(AUC 83.27±0.11,20.9M 参数),同时依赖的参数要少得多。该模型利用了不同粒度的特征,从而更准确地分类所有发现,无论其大小如何,这凸显了这种方法的优势。

结论

不同的胸部 X 射线发现最好在不同的尺度上进行分类。我们的研究表明,可以几乎不增加额外参数就获得多尺度特征,从而提高性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验