Suppr超能文献

利用石英增强光声光谱法对人体皮肤排放的二氧化碳进行连续实时监测。

Continuous real-time monitoring of carbon dioxide emitted from human skin by quartz-enhanced photoacoustic spectroscopy.

作者信息

Zhang Yixin, Xie Yi, Lu Juncheng, Zhao Jiasheng, Wu Yuhua, Tong Jinlin, Shao Jie

机构信息

Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China.

College of Mechanical and Electrical Engineering, Wenzhou University, 325035, China.

出版信息

Photoacoustics. 2023 Apr 5;30:100488. doi: 10.1016/j.pacs.2023.100488. eCollection 2023 Apr.

Abstract

In this study, a skin gas detection system based on quartz enhanced photoacoustic spectroscopy (QEPAS) with a constant temperature collection chamber and an automatic frequency adjustment function was used to collect and monitor carbon dioxide (CO) emissions from human skin. The detection element of the system is an on-beam structure assembled by a 30.72 kHz quartz tuning fork (QTF). A laser with a wavelength of 4991.26 cm is emitted (with a wavelength adjustment range of 10 cm) to excite the QTF. When the integration time is 365 s, the system can achieve a minimum detection limit (MDL) of 2.6 ppmv. The sensitivity of the system is 636.9 ppmv/V. The gas detection system is used to monitor the concentration of CO emissions from different parts of the skin and the same part covered by different cosmetics. The CO emission rate is defined as the ratio of the skin gas monitoring time of 25 min to the CO concentration variable in the gas chamber (volume of 8 mL). The results were collected from three healthy volunteers. Among the six different parts, the cheeks emitted the fastest rate (the average rate was 365.5 ppmv/min) of CO, and the thighs emitted the slowest rate (the average rate was 56.4 ppmv/min) of CO. Comparing the experimental results of the six sites at different times, the order of the CO emission rate is identical for all six sites. In the experiments with the three cosmetic products (experimental site: forearm), comparing the CO emission rate from clean skin with the CO emission rate from cosmetic-covered skin shows that sunscreen is the most breathable, followed by barrier cream, and foundation is the least breathable.

摘要

在本研究中,使用了一种基于石英增强光声光谱(QEPAS)的皮肤气体检测系统,该系统具有恒温采集室和自动频率调节功能,用于收集和监测人体皮肤的二氧化碳(CO)排放。该系统的检测元件是由一个30.72kHz石英音叉(QTF)组装而成的光束结构。发射波长为4991.26cm的激光(波长调节范围为10cm)来激发QTF。当积分时间为365s时,该系统可实现2.6ppmv的最低检测限(MDL)。系统的灵敏度为636.9ppmv/V。该气体检测系统用于监测皮肤不同部位以及被不同化妆品覆盖的同一部位的CO排放浓度。CO排放率定义为25分钟皮肤气体监测时间与气室中CO浓度变化量(气室体积为8mL)的比值。结果来自三名健康志愿者。在六个不同部位中,脸颊的CO排放速率最快(平均速率为365.5ppmv/min),大腿的CO排放速率最慢(平均速率为56.4ppmv/min)。比较六个部位在不同时间的实验结果,所有六个部位的CO排放速率顺序相同。在使用三种化妆品的实验中(实验部位:前臂),将清洁皮肤的CO排放速率与涂抹化妆品皮肤的CO排放速率进行比较,结果表明防晒霜透气性最好,其次是隔离霜,粉底透气性最差。

相似文献

1
Continuous real-time monitoring of carbon dioxide emitted from human skin by quartz-enhanced photoacoustic spectroscopy.
Photoacoustics. 2023 Apr 5;30:100488. doi: 10.1016/j.pacs.2023.100488. eCollection 2023 Apr.
2
Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork.
Photoacoustics. 2021 Dec 6;25:100321. doi: 10.1016/j.pacs.2021.100321. eCollection 2022 Mar.
3
Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO in the greenhouse.
Photoacoustics. 2022 Jan 27;25:100332. doi: 10.1016/j.pacs.2022.100332. eCollection 2022 Mar.
6
Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.
Sensors (Basel). 2015 Mar 27;15(4):7596-604. doi: 10.3390/s150407596.
8
Infrared dual-gas CH/CH sensor system based on dual-channel off-beam quartz-enhanced photoacoustic spectroscopy and time-division multiplexing technique.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Jan 15;285:121908. doi: 10.1016/j.saa.2022.121908. Epub 2022 Sep 22.
10
Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Small-Gap Quartz Tuning Fork.
Sensors (Basel). 2018 Jun 27;18(7):2047. doi: 10.3390/s18072047.

引用本文的文献

1
Wearable continuous diffusion-based skin gas analysis.
Nat Commun. 2025 May 10;16(1):4343. doi: 10.1038/s41467-025-59629-x.
2
Recent Technologies for Transcutaneous Oxygen and Carbon Dioxide Monitoring.
Diagnostics (Basel). 2024 Apr 9;14(8):785. doi: 10.3390/diagnostics14080785.
3
A mini-resonant photoacoustic sensor based on a sphere-cylinder coupled acoustic resonator for high-sensitivity trace gas sensing.
Photoacoustics. 2024 Feb 9;37:100595. doi: 10.1016/j.pacs.2024.100595. eCollection 2024 Jun.
4
Multivariate analysis and digital twin modelling: Alternative approaches to evaluate molecular relaxation in photoacoustic spectroscopy.
Photoacoustics. 2023 Oct 9;33:100564. doi: 10.1016/j.pacs.2023.100564. eCollection 2023 Oct.

本文引用的文献

1
Characterization of HS QEPAS detection in methane-based gas leaks dispersed into environment.
Photoacoustics. 2022 Dec 13;29:100438. doi: 10.1016/j.pacs.2022.100438. eCollection 2023 Feb.
2
Photoacoustic heterodyne breath sensor for real-time measurement of human exhaled carbon monoxide.
Photoacoustics. 2022 Aug 9;27:100388. doi: 10.1016/j.pacs.2022.100388. eCollection 2022 Sep.
3
Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO in the greenhouse.
Photoacoustics. 2022 Jan 27;25:100332. doi: 10.1016/j.pacs.2022.100332. eCollection 2022 Mar.
4
Ppb-level gas detection using on-beam quartz-enhanced photoacoustic spectroscopy based on a 28 kHz tuning fork.
Photoacoustics. 2021 Dec 6;25:100321. doi: 10.1016/j.pacs.2021.100321. eCollection 2022 Mar.
5
Compact and portable quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide environmental monitoring in urban areas.
Photoacoustics. 2021 Nov 25;25:100318. doi: 10.1016/j.pacs.2021.100318. eCollection 2022 Mar.
6
Towards low-cost QEPAS sensors for nitrogen dioxide detection.
Photoacoustics. 2020 Mar 10;18:100169. doi: 10.1016/j.pacs.2020.100169. eCollection 2020 Jun.
7
Low noise, open-source QEPAS system with instrumentation amplifier.
Sci Rep. 2019 Feb 12;9(1):1838. doi: 10.1038/s41598-019-38509-7.
8
Diagnostic value of fractional exhaled nitric oxide in cough-variant asthma: an updated meta-analysis.
J Asthma. 2020 Mar;57(3):335-342. doi: 10.1080/02770903.2019.1568452. Epub 2019 Feb 1.
10
Exhaled breath analysis: a review of 'breath-taking' methods for off-line analysis.
Metabolomics. 2017;13(10):110. doi: 10.1007/s11306-017-1241-8. Epub 2017 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验