Suppr超能文献

Dmriprep:具有图形用户界面的开源扩散磁共振成像质量控制框架。

Dmriprep: open-source diffusion MRI quality control framework with graphical user interface.

作者信息

Dubos Johanna, Park Sang Kyoon, Vlasova Roza, Prieto Juan Carlos, Styner Martin

机构信息

Dept Psychiatry, University of North Carolina, Chapel Hill, NC, USA.

Dept Computer Science, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654470. Epub 2023 Apr 3.

Abstract

In the last decade, investigating white matter microstructure and connectivity via diffusion MRI (dmri) has become a crucial cornerstone in neuroimaging studies. However, even modern dmri sequences have inherently a low signal-to-noise ratio and long acquisition times, depending on the spatial resolution. Furthermore, many types of artifacts complicate the appropriate analysis of dmri, necessitating appropriate quality control (QC) procedures, including exclusion and/or correction of inappropriate/erroneous dmri data. Our group has been developing and promoting QC procedures and tools to the community to enable appropriate dmri analyses. Since its development in 2011, our DTIPrep QC tool has become a major tool due its ease of use and dmri QC performance. Over the years, novel developments in acquisition and artifact correction methods have led to a need to modernize DTIPrep. Here, we present a novel diffusion MRI analysis environment called with a fully redesigned and significantly enhanced QC module , and its graphical user interface , building on in-house developed code, FSL and dipy. The user interface is designed to be a unified, user friendly tool for thorough QC of dMRI data.Artifacts addressed by include eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, slice-wise and gradient-wise intensity inconsistencies, and susceptibility artifacts. It further provides an user interface for visual QC of gradients and automated tractography. In summary, our work presents a novel open-source framework for modern comprehensive dmri QC.

摘要

在过去十年中,通过扩散磁共振成像(dmri)研究白质微观结构和连通性已成为神经影像学研究的关键基石。然而,即使是现代的dmri序列,其固有信噪比低且采集时间长,这取决于空间分辨率。此外,多种伪影使dmri的适当分析变得复杂,因此需要适当的质量控制(QC)程序,包括排除和/或校正不适当/错误的dmri数据。我们团队一直在开发并向社区推广QC程序和工具,以实现适当的dmri分析。自2011年开发以来,我们的DTIPrep QC工具因其易用性和dmri QC性能,已成为主要工具。多年来,采集和伪影校正方法的新发展导致需要对DTIPrep进行现代化改进。在此,我们基于内部开发的代码、FSL和dipy,展示了一种名为 的新型扩散磁共振成像分析环境,其具有完全重新设计且显著增强的QC模块 及其图形用户界面 。该用户界面设计为一个统一、用户友好的工具,用于对dMRI数据进行全面的QC。 解决的伪影包括涡流、头部运动、床体振动和脉动、百叶窗伪影、切片方向和梯度方向的强度不一致以及磁化率伪影。它还提供了一个用于梯度视觉QC和自动纤维束成像的用户界面。总之,我们的工作展示了一个用于现代综合dmri QC的新型开源框架。

相似文献

1
Dmriprep: open-source diffusion MRI quality control framework with graphical user interface.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654470. Epub 2023 Apr 3.
2
DTIPrep: quality control of diffusion-weighted images.
Front Neuroinform. 2014 Jan 30;8:4. doi: 10.3389/fninf.2014.00004. eCollection 2014.
4
Diffusion imaging quality control via entropy of principal direction distribution.
Neuroimage. 2013 Nov 15;82:1-12. doi: 10.1016/j.neuroimage.2013.05.022. Epub 2013 May 17.
5
Quality Control of Diffusion Weighted Images.
Proc SPIE Int Soc Opt Eng. 2010 Mar 11;7628:76280J-. doi: 10.1117/12.844748.
6
Automated motion artifact detection in early pediatric diffusion MRI using a convolutional neural network.
Imaging Neurosci (Camb). 2023;1. doi: 10.1162/imag_a_00023. Epub 2023 Oct 17.
8
QC-Automator: Deep Learning-Based Automated Quality Control for Diffusion MR Images.
Front Neurosci. 2020 Jan 22;13:1456. doi: 10.3389/fnins.2019.01456. eCollection 2019.
10
Dipy, a library for the analysis of diffusion MRI data.
Front Neuroinform. 2014 Feb 21;8:8. doi: 10.3389/fninf.2014.00008. eCollection 2014.

引用本文的文献

1
Streamline tractography of the fetal brain in utero with machine learning.
Imaging Neurosci (Camb). 2025 Apr 9;3. doi: 10.1162/imag_a_00537. eCollection 2025.
2
What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review.
Pain. 2025 Feb 1;166(2):243-261. doi: 10.1097/j.pain.0000000000003345. Epub 2024 Aug 21.

本文引用的文献

1
QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data.
Nat Methods. 2021 Jul;18(7):775-778. doi: 10.1038/s41592-021-01185-5. Epub 2021 Jun 21.
2
The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy.
Front Neuroinform. 2019 Oct 15;13:64. doi: 10.3389/fninf.2019.00064. eCollection 2019.
3
The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.
Neuroimage. 2019 Jan 15;185:891-905. doi: 10.1016/j.neuroimage.2018.03.049. Epub 2018 Mar 22.
4
Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement.
Neuroimage. 2017 May 15;152:450-466. doi: 10.1016/j.neuroimage.2017.02.085. Epub 2017 Mar 8.
7
Comparison of quality control software tools for diffusion tensor imaging.
Magn Reson Imaging. 2015 Apr;33(3):276-85. doi: 10.1016/j.mri.2014.10.011. Epub 2014 Nov 7.
8
DTIPrep: quality control of diffusion-weighted images.
Front Neuroinform. 2014 Jan 30;8:4. doi: 10.3389/fninf.2014.00004. eCollection 2014.
9
UNC-Utah NA-MIC framework for DTI fiber tract analysis.
Front Neuroinform. 2014 Jan 9;7:51. doi: 10.3389/fninf.2013.00051. eCollection 2014.
10
NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.
Neuroimage. 2012 Jul 16;61(4):1000-16. doi: 10.1016/j.neuroimage.2012.03.072. Epub 2012 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验