Srivastava Meghna, Hering Abigail R, An Yu, Correa-Baena Juan-Pablo, Leite Marina S
Department of Materials Science and Engineering, UC Davis, Davis, California 95616, United States.
Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Energy Lett. 2023 Mar 10;8(4):1716-1722. doi: 10.1021/acsenergylett.2c02555. eCollection 2023 Apr 14.
The composition-dependent degradation of hybrid organic-inorganic perovskites (HOIPs) due to environmental stressors still precludes their commercialization. It is very difficult to quantify their behavior upon exposure to each stressor by exclusively using trial-and-error methods due to the high-dimensional parameter space involved. We implement machine learning (ML) models using high-throughput, photoluminescence (PL) to predict the response of Cs FA Pb(Br I ) while exposed to relative humidity cycles. We quantitatively compare three ML models while generating forecasts of environment-dependent PL responses: linear regression, echo state network, and seasonal autoregressive integrated moving average with exogenous regressor algorithms. We achieve accuracy of >90% for the latter, while tracking PL changes over a 50 h window. Samples with 17% of Cs content consistently showed a PL increase as a function of cycle. Our precise time-series forecasts can be extended to other HOIP families, illustrating the potential of data-centric approaches to accelerate material development for clean-energy devices.
由于环境压力因素导致的有机-无机杂化钙钛矿(HOIPs)的成分依赖性降解仍然阻碍了它们的商业化。由于涉及高维参数空间,仅通过反复试验的方法来量化它们在暴露于每种压力因素时的行为是非常困难的。我们使用高通量光致发光(PL)实现机器学习(ML)模型,以预测CsFA Pb(BrI)在暴露于相对湿度循环时的响应。在生成与环境相关的PL响应预测时,我们定量比较了三种ML模型:线性回归、回声状态网络和带有外生回归算法的季节性自回归积分移动平均。对于后者,我们在跟踪50小时窗口内的PL变化时,实现了>90%的准确率。Cs含量为17%的样品始终显示出PL随循环而增加。我们精确的时间序列预测可以扩展到其他HOIP家族,说明了以数据为中心的方法在加速清洁能源设备材料开发方面的潜力。