Kumar Jeykishan, Nath Bidisha, Bhattacharjee Tulika, Ramamurthy Praveen C
Interdisciplinary Center for Energy and Research, Indian Institute of Science, Bengaluru, India.
Central Power Research Institute Bengaluru, Bengaluru, India.
Sci Rep. 2025 Aug 20;15(1):30660. doi: 10.1038/s41598-025-93004-6.
Luminescence imaging techniques assume a critical role in the evaluation of the durability and lifespan of solar cells. This study presents a novel empirical approach that capitalizes on simple machine learning-based linear regression (MLLR) to prognosticate the performance of perovskite solar cells (PSCs). Three types of MLLR models were developed: (a) Full width at Half maximum (FWHM)-based MLLR Model, (b) Colour Correlated Temperature (CCT)-based MLLR Model, and (c) Hybrid or FWHM-CCT-based MLLR Model. The proposed FWHM-based MLLR model achieves the best overall performance in fitting all current-voltage (IV) parameters. The CCT-based model, while applicable to all parameters, exhibits slightly lower accuracy compared to the FWHM-based approach; however, considering standalone analysis, CCT-based MLLR model is the best fit for estimation of Voc and FF parameters. This prognostication hinges on quantitatively assessing the FWHM using electroluminescence (EL) spectroscopy data. Notably, this investigation stands out by showcasing the potential of simple yet supervised machine learning in appraising IV characteristics of PSC through EL spectroscopy. Remarkably, the study attains an average predictive accuracy of beyond 90% for IV characteristics via EL spectroscopy facilitated by a supervised machine-learning model using both continuous and discontinuous datasets. The findings of this research underscore the potential of supervised machine learning as an innovative technique for approximating IV curve parameters of PSC, utilizing EL spectroscopy. This advancement holds significant ramifications for fortifying the assessment of PSCs in terms of reliability analysis and manufacturing efficiency.
发光成像技术在评估太阳能电池的耐久性和寿命方面发挥着关键作用。本研究提出了一种新颖的经验方法,该方法利用基于简单机器学习的线性回归(MLLR)来预测钙钛矿太阳能电池(PSC)的性能。开发了三种类型的MLLR模型:(a)基于半高宽(FWHM)的MLLR模型,(b)基于颜色相关温度(CCT)的MLLR模型,以及(c)基于混合或FWHM - CCT的MLLR模型。所提出的基于FWHM的MLLR模型在拟合所有电流 - 电压(IV)参数方面实现了最佳的整体性能。基于CCT的模型虽然适用于所有参数,但与基于FWHM的方法相比,精度略低;然而,考虑单独分析时,基于CCT的MLLR模型最适合估计Voc和FF参数。这种预测取决于使用电致发光(EL)光谱数据对FWHM进行定量评估。值得注意的是,本研究通过展示简单但有监督的机器学习在通过EL光谱评估PSC的IV特性方面的潜力而脱颖而出。值得注意的是,该研究通过使用连续和不连续数据集的有监督机器学习模型,通过EL光谱对IV特性实现了超过90%的平均预测准确率。本研究结果强调了有监督机器学习作为一种利用EL光谱近似PSC的IV曲线参数的创新技术的潜力。这一进展对于加强PSC在可靠性分析和制造效率方面的评估具有重大影响。