图像采集参数和ComBat归一化对影像组学预测性能的影响:肾细胞癌模型

The Impact of Image Acquisition Parameters and ComBat Harmonization on the Predictive Performance of Radiomics: A Renal Cell Carcinoma Model.

作者信息

Ibrahim Abdalla, Lu Lin, Yang Hao, Akin Oguz, Schwartz Lawrence H, Zhao Binsheng

机构信息

Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Appl Sci (Basel). 2022 Oct;12(19). doi: 10.3390/app12199824. Epub 2022 Sep 29.

Abstract

Radiomics, one of the potential methods for developing clinical biomarker, is one of the exponentially growing research fields. In addition to its potential, several limitations have been identified in this field, and most importantly the effects of variations in imaging parameters on radiomic features (RFs). In this study, we investigate the potential of RFs to predict overall survival in patients with clear cell renal cell carcinoma, as well as the impact of ComBat harmonization on the performance of RF models. We assessed the robustness of the results by performing the analyses a thousand times. Publicly available CT scans of 179 patients were retrospectively collected and analyzed. The scans were acquired using different imaging vendors and parameters in different medical centers. The performance was calculated by averaging the metrics over all runs. On average, the clinical model significantly outperformed the radiomic models. The use of ComBat harmonization, on average, did not significantly improve the performance of radiomic models. Hence, the variability in image acquisition and reconstruction parameters significantly affect the performance of radiomic models. The development of radiomic specific harmonization techniques remain a necessity for the advancement of the field.

摘要

放射组学作为开发临床生物标志物的潜在方法之一,是一个呈指数级增长的研究领域。除了其潜力外,该领域还存在一些局限性,其中最重要的是成像参数变化对放射组学特征(RFs)的影响。在本研究中,我们调查了RFs预测透明细胞肾细胞癌患者总生存期的潜力,以及ComBat归一化对RF模型性能的影响。我们通过进行一千次分析来评估结果的稳健性。回顾性收集并分析了179例患者公开可用的CT扫描数据。这些扫描是在不同医疗中心使用不同成像供应商和参数获取的。通过对所有运行的指标进行平均来计算性能。平均而言,临床模型显著优于放射组学模型。平均而言,使用ComBat归一化并没有显著提高放射组学模型的性能。因此,图像采集和重建参数的变异性显著影响放射组学模型的性能。开发放射组学特定的归一化技术仍然是该领域发展的必要条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/930c/10121203/82abce4c8200/nihms-1887786-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索