Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.
ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France.
ACS Nano. 2023 May 9;17(9):8796-8806. doi: 10.1021/acsnano.3c02149. Epub 2023 Apr 24.
One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri--octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr or Zr(OBu)), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.
如今,人们可以很容易地制备单分散胶体纳米晶,但成核和生长的基本机制仍存在激烈的争论。在这里,我们结合了 X 射线对分布函数(PDF)分析、小角 X 射线散射(SAXS)、核磁共振(NMR)和透射电子显微镜(TEM),研究了在 340°C 下,在表面活性剂(三--辛基氧化膦)存在的条件下,从四氯化锆和异丙醇锆制备氧化锆纳米晶的成核和生长过程。通过 E1 消除,前驱体转化导致形成小颗粒(直径小于 2nm)。在反应过程中,总颗粒浓度降低,而纳米晶浓度在突然增加(成核)后保持不变。动力学模型表明,无定形颗粒通过二级过程成核为纳米晶,它们也是纳米晶生长的来源。没有证据表明存在可溶性单体。非经典成核与前驱体分解速率有关,其分解速率比观察到的结晶速率高一个数量级。使用不同的锆前驱体(例如 ZrBr 或 Zr(OBu)),我们可以调节前驱体的分解速率,从而控制纳米晶的尺寸。我们希望这些发现有助于研究人员进一步发展胶体合成。