Goossens Eline, Aalling-Frederiksen Olivia, Tack Pieter, Van den Eynden Dietger, Walsh-Korb Zarah, Jensen Kirsten M Ø, De Buysser Klaartje, De Roo Jonathan
Department of Chemistry, Ghent University, 9000 Ghent, Belgium.
Department of Chemistry, University of Basel, 4058 Basel, Switzerland.
J Am Chem Soc. 2024 Apr 17;146(15):10723-10734. doi: 10.1021/jacs.4c00678. Epub 2024 Apr 8.
Nonaqueous sol-gel syntheses have been used to make many types of metal oxide nanocrystals. According to the current paradigm, nonaqueous syntheses have slow kinetics, thus favoring the thermodynamic (crystalline) product. Here we investigate the synthesis of hafnium (and zirconium) oxide nanocrystals from the metal chloride in benzyl alcohol. We follow the transition from precursor to nanocrystal through a combination of rheology, EXAFS, NMR, TEM, and X-ray total scattering (PDF analysis). Upon dissolving the metal chloride precursor, the exchange of chloride ligands for benzylalkoxide liberates HCl. The latter catalyzes the etherification of benzyl alcohol, eliminating water. During the temperature ramp to the reaction temperature (220 °C), sufficient water is produced to turn the reaction mixture into a macroscopic gel. Rheological analysis shows a network consisting of strong interactions with temperature-dependent restructuring. After a few minutes at the reaction temperature, crystalline particles emerge from the gel, and nucleation and growth are complete after 30 min. In contrast, 4 h are required to obtain the highest isolated yield, which we attribute to the slow formation of water (the extraction solvent). We used our mechanistic insights to optimize the synthesis, achieving high isolated yields with a reduced reaction time. Our results oppose the idea that nonaqueous sol-gel syntheses necessarily form crystalline products in one step, without a transient, amorphous gel state.
非水溶胶-凝胶合成法已被用于制备多种类型的金属氧化物纳米晶体。根据当前的范式,非水合成动力学缓慢,因此有利于形成热力学(结晶)产物。在此,我们研究了在苄醇中由金属氯化物合成氧化铪(和氧化锆)纳米晶体的过程。我们通过流变学、扩展X射线吸收精细结构(EXAFS)、核磁共振(NMR)、透射电子显微镜(TEM)和X射线全散射(PDF分析)相结合的方法跟踪从前体到纳米晶体的转变。溶解金属氯化物前体时,氯离子配体被苄醇盐取代会释放出HCl。后者催化苄醇的醚化反应,除去水。在升温至反应温度(220°C)的过程中,会产生足够的水,使反应混合物变成宏观凝胶。流变学分析表明,存在一个由与温度相关的重组作用形成的强相互作用网络。在反应温度下几分钟后,凝胶中出现结晶颗粒,30分钟后成核和生长完成。相比之下,需要4小时才能获得最高的分离产率,我们将其归因于水(萃取溶剂)形成缓慢。我们利用对反应机理的理解来优化合成过程,在缩短反应时间的同时实现了高分离产率。我们的结果与非水溶胶-凝胶合成必然一步形成结晶产物而不存在瞬态无定形凝胶态的观点相悖。