Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore.
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
Eur Spine J. 2023 Nov;32(11):3815-3824. doi: 10.1007/s00586-023-07706-4. Epub 2023 Apr 24.
To develop a deep learning (DL) model for epidural spinal cord compression (ESCC) on CT, which will aid earlier ESCC diagnosis for less experienced clinicians.
We retrospectively collected CT and MRI data from adult patients with suspected ESCC at a tertiary referral institute from 2007 till 2020. A total of 183 patients were used for training/validation of the DL model. A separate test set of 40 patients was used for DL model evaluation and comprised 60 staging CT and matched MRI scans performed with an interval of up to 2 months. DL model performance was compared to eight readers: one musculoskeletal radiologist, two body radiologists, one spine surgeon, and four trainee spine surgeons. Diagnostic performance was evaluated using inter-rater agreement, sensitivity, specificity and AUC.
Overall, 3115 axial CT slices were assessed. The DL model showed high kappa of 0.872 for normal, low and high-grade ESCC (trichotomous), which was superior compared to a body radiologist (R4, κ = 0.667) and all four trainee spine surgeons (κ range = 0.625-0.838)(all p < 0.001). In addition, for dichotomous normal versus any grade of ESCC detection, the DL model showed high kappa (κ = 0.879), sensitivity (91.82), specificity (92.01) and AUC (0.919), with the latter AUC superior to all readers (AUC range = 0.732-0.859, all p < 0.001).
A deep learning model for the objective assessment of ESCC on CT had comparable or superior performance to radiologists and spine surgeons. Earlier diagnosis of ESCC on CT could reduce treatment delays, which are associated with poor outcomes, increased costs, and reduced survival.
开发一种用于 CT 硬膜外脊髓压迫症(ESCC)的深度学习(DL)模型,以帮助经验较少的临床医生更早地诊断 ESCC。
我们回顾性地收集了 2007 年至 2020 年在一家三级转诊机构因疑似 ESCC 接受 CT 和 MRI 检查的成人患者的数据。183 名患者用于训练/验证 DL 模型。一个单独的 40 名患者的测试集用于 DL 模型评估,包含 60 个分期 CT 和与之匹配的 MRI 扫描,扫描间隔长达 2 个月。DL 模型的性能与 8 名读者进行了比较:一名肌肉骨骼放射科医生、两名体部放射科医生、一名脊柱外科医生和四名脊柱外科住院医生。使用组内一致性、敏感性、特异性和 AUC 评估诊断性能。
总体而言,评估了 3115 个轴向 CT 切片。DL 模型对正常、低级别和高级别 ESCC(三分法)的kappa 值为 0.872,明显优于一名体部放射科医生(R4,kappa=0.667)和四名脊柱外科住院医生(kappa 范围为 0.625-0.838)(均 P<0.001)。此外,对于正常与任何级别 ESCC 检测的二分法,DL 模型显示出较高的kappa(kappa=0.879)、敏感性(91.82%)、特异性(92.01%)和 AUC(0.919),后者的 AUC 明显优于所有读者(AUC 范围为 0.732-0.859,均 P<0.001)。
一种用于 CT 上 ESCC 客观评估的深度学习模型的表现与放射科医生和脊柱外科医生相当或更好。在 CT 上更早地诊断 ESCC 可以减少治疗延误,治疗延误与不良结局、增加成本和降低生存率有关。