Hallinan James Thomas Patrick Decourcy, Zhu Lei, Zhang Wenqiao, Kuah Tricia, Lim Desmond Shi Wei, Low Xi Zhen, Cheng Amanda J L, Eide Sterling Ellis, Ong Han Yang, Muhamat Nor Faimee Erwan, Alsooreti Ahmed Mohamed, AlMuhaish Mona I, Yeong Kuan Yuen, Teo Ee Chin, Barr Kumarakulasinghe Nesaretnam, Yap Qai Ven, Chan Yiong Huak, Lin Shuxun, Tan Jiong Hao, Kumar Naresh, Vellayappan Balamurugan A, Ooi Beng Chin, Quek Swee Tian, Makmur Andrew
Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore.
Cancers (Basel). 2022 Jun 30;14(13):3219. doi: 10.3390/cancers14133219.
Background: Metastatic epidural spinal cord compression (MESCC) is a disastrous complication of advanced malignancy. Deep learning (DL) models for automatic MESCC classification on staging CT were developed to aid earlier diagnosis. Methods: This retrospective study included 444 CT staging studies from 185 patients with suspected MESCC who underwent MRI spine studies within 60 days of the CT studies. The DL model training/validation dataset consisted of 316/358 (88%) and the test set of 42/358 (12%) CT studies. Training/validation and test datasets were labeled in consensus by two subspecialized radiologists (6 and 11-years-experience) using the MRI studies as the reference standard. Test sets were labeled by the developed DL models and four radiologists (2−7 years of experience) for comparison. Results: DL models showed almost-perfect interobserver agreement for classification of CT spine images into normal, low, and high-grade MESCC, with kappas ranging from 0.873−0.911 (p < 0.001). The DL models (lowest κ = 0.873, 95% CI 0.858−0.887) also showed superior interobserver agreement compared to two of the four radiologists for three-class classification, including a specialist (κ = 0.820, 95% CI 0.803−0.837) and general radiologist (κ = 0.726, 95% CI 0.706−0.747), both p < 0.001. Conclusion: DL models for the MESCC classification on a CT showed comparable to superior interobserver agreement to radiologists and could be used to aid earlier diagnosis.
转移性硬膜外脊髓压迫症(MESCC)是晚期恶性肿瘤的灾难性并发症。已开发出用于在分期CT上自动进行MESCC分类的深度学习(DL)模型,以帮助早期诊断。方法:这项回顾性研究纳入了185例疑似MESCC患者的444份CT分期研究,这些患者在CT检查后的60天内接受了脊柱MRI检查。DL模型训练/验证数据集由316/358(88%)份CT研究组成,测试集由42/358(12%)份CT研究组成。训练/验证和测试数据集由两位亚专业放射科医生(分别有6年和11年经验)以MRI研究作为参考标准达成共识进行标注。测试集由开发的DL模型和四位放射科医生(经验为2 - 7年)进行标注以作比较。结果:DL模型在将CT脊柱图像分类为正常、低度和高度MESCC方面显示出几乎完美的观察者间一致性,kappa值范围为0.873 - 0.911(p < 0.001)。在三类分类中,DL模型(最低κ = 0.873,95% CI 0.858 - 0.887)与四位放射科医生中的两位相比,也显示出更好的观察者间一致性,其中包括一位专科医生(κ = 0.820,95% CI 0.803 - 0.837)和一位普通放射科医生(κ = 0.726,95% CI 0.706 - 0.747),两者p均< 0.001)。结论:用于CT上MESCC分类的DL模型显示出与放射科医生相当甚至更好的观察者间一致性,可用于帮助早期诊断。