First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
Brandeis University, Waltham, MA, 02453, USA.
Cell Stress Chaperones. 2023 May;28(3):239-251. doi: 10.1007/s12192-023-01346-9. Epub 2023 Apr 24.
Myocardial ischemia reduces the supply of oxygen and nutrients to cardiomyocytes, leading to an energetic crisis or cell death. Mitochondrial dysfunction is a decisive contributor to the reception, transmission, and modification of cardiac ischemic signals. Cells with damaged mitochondria exhibit impaired mitochondrial metabolism and increased vulnerability to death stimuli due to disrupted mitochondrial respiration, reactive oxygen species overproduction, mitochondrial calcium overload, and mitochondrial genomic damage. Various intracellular and extracellular stress signaling pathways converge on mitochondria, so dysfunctional mitochondria tend to convert from energetic hubs to apoptotic centers. To interrupt the stress signal transduction resulting from lethal mitochondrial damage, cells can activate mitophagy (mitochondria-specific autophagy), which selectively eliminates dysfunctional mitochondria to preserve mitochondrial quality control. Different pharmacological and non-pharmacological strategies have been designed to augment the protective properties of mitophagy and have been validated in basic animal experiments and pre-clinical human trials. In this review, we describe the process of mitophagy in cardiomyocytes under ischemic stress, along with its regulatory mechanisms and downstream effects. Then, we discuss promising therapeutic approaches to preserve mitochondrial homeostasis and protect the myocardium against ischemic damage by inducing mitophagy.
心肌缺血会减少心肌细胞的氧气和营养供应,导致能量危机或细胞死亡。线粒体功能障碍是接收、传递和修饰心脏缺血信号的决定性因素。线粒体呼吸功能障碍、活性氧过度产生、线粒体钙超载和线粒体基因组损伤会导致受损线粒体的线粒体代谢受损,并增加对死亡刺激的易感性。各种细胞内和细胞外应激信号通路都汇聚到线粒体,因此功能失调的线粒体往往会从能量中心转变为凋亡中心。为了中断由致命性线粒体损伤引起的应激信号转导,细胞可以激活自噬(线粒体特异性自噬),选择性地消除功能失调的线粒体,以维持线粒体的质量控制。已经设计了不同的药理学和非药理学策略来增强自噬的保护特性,并在基础动物实验和临床前人体试验中得到了验证。在这篇综述中,我们描述了在缺血应激下心肌细胞中线粒体自噬的过程,以及其调节机制和下游效应。然后,我们讨论了有希望的治疗方法,通过诱导自噬来维持线粒体的动态平衡,保护心肌免受缺血损伤。