Suppr超能文献

自噬作为心肌缺血应激中的一种线粒体质量控制机制:从基础到临床。

Mitophagy as a mitochondrial quality control mechanism in myocardial ischemic stress: from bench to bedside.

机构信息

First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.

Brandeis University, Waltham, MA, 02453, USA.

出版信息

Cell Stress Chaperones. 2023 May;28(3):239-251. doi: 10.1007/s12192-023-01346-9. Epub 2023 Apr 24.

Abstract

Myocardial ischemia reduces the supply of oxygen and nutrients to cardiomyocytes, leading to an energetic crisis or cell death. Mitochondrial dysfunction is a decisive contributor to the reception, transmission, and modification of cardiac ischemic signals. Cells with damaged mitochondria exhibit impaired mitochondrial metabolism and increased vulnerability to death stimuli due to disrupted mitochondrial respiration, reactive oxygen species overproduction, mitochondrial calcium overload, and mitochondrial genomic damage. Various intracellular and extracellular stress signaling pathways converge on mitochondria, so dysfunctional mitochondria tend to convert from energetic hubs to apoptotic centers. To interrupt the stress signal transduction resulting from lethal mitochondrial damage, cells can activate mitophagy (mitochondria-specific autophagy), which selectively eliminates dysfunctional mitochondria to preserve mitochondrial quality control. Different pharmacological and non-pharmacological strategies have been designed to augment the protective properties of mitophagy and have been validated in basic animal experiments and pre-clinical human trials. In this review, we describe the process of mitophagy in cardiomyocytes under ischemic stress, along with its regulatory mechanisms and downstream effects. Then, we discuss promising therapeutic approaches to preserve mitochondrial homeostasis and protect the myocardium against ischemic damage by inducing mitophagy.

摘要

心肌缺血会减少心肌细胞的氧气和营养供应,导致能量危机或细胞死亡。线粒体功能障碍是接收、传递和修饰心脏缺血信号的决定性因素。线粒体呼吸功能障碍、活性氧过度产生、线粒体钙超载和线粒体基因组损伤会导致受损线粒体的线粒体代谢受损,并增加对死亡刺激的易感性。各种细胞内和细胞外应激信号通路都汇聚到线粒体,因此功能失调的线粒体往往会从能量中心转变为凋亡中心。为了中断由致命性线粒体损伤引起的应激信号转导,细胞可以激活自噬(线粒体特异性自噬),选择性地消除功能失调的线粒体,以维持线粒体的质量控制。已经设计了不同的药理学和非药理学策略来增强自噬的保护特性,并在基础动物实验和临床前人体试验中得到了验证。在这篇综述中,我们描述了在缺血应激下心肌细胞中线粒体自噬的过程,以及其调节机制和下游效应。然后,我们讨论了有希望的治疗方法,通过诱导自噬来维持线粒体的动态平衡,保护心肌免受缺血损伤。

相似文献

1
Mitophagy as a mitochondrial quality control mechanism in myocardial ischemic stress: from bench to bedside.
Cell Stress Chaperones. 2023 May;28(3):239-251. doi: 10.1007/s12192-023-01346-9. Epub 2023 Apr 24.
2
Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
Autophagy. 2019 Dec;15(12):2142-2162. doi: 10.1080/15548627.2019.1615822. Epub 2019 May 22.
3
Emerging role of mitophagy in heart failure: from molecular mechanism to targeted therapy.
Cell Cycle. 2023 Apr;22(8):906-918. doi: 10.1080/15384101.2023.2167949. Epub 2023 Jan 19.
4
Dissociation of mitochondrial HK-II elicits mitophagy and confers cardioprotection against ischemia.
Cell Death Dis. 2019 Sep 30;10(10):730. doi: 10.1038/s41419-019-1965-7.
6
PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes.
PLoS One. 2015 Jun 25;10(6):e0130707. doi: 10.1371/journal.pone.0130707. eCollection 2015.
9
Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy.
J Physiol Sci. 2019 Jan;69(1):113-127. doi: 10.1007/s12576-018-0627-3. Epub 2018 Jun 30.

引用本文的文献

1
Mitophagy in Hypertensive Cardiac Hypertrophy: Mechanisms and Therapeutic Implications.
J Clin Hypertens (Greenwich). 2025 Aug;27(8):e70127. doi: 10.1111/jch.70127.
2
From powerhouse to modulator: regulating immune system responses through intracellular mitochondrial transfer.
Cell Commun Signal. 2025 May 20;23(1):232. doi: 10.1186/s12964-025-02237-5.
5
Mitochondrial Kinase Signaling for Cardioprotection.
Int J Mol Sci. 2024 Apr 19;25(8):4491. doi: 10.3390/ijms25084491.
7
Mitochondrial DNA copy number in patients with systemic sclerosis.
Front Mol Biosci. 2023 Dec 14;10:1313426. doi: 10.3389/fmolb.2023.1313426. eCollection 2023.
8
Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer.
J Transl Med. 2023 Sep 19;21(1):635. doi: 10.1186/s12967-023-04498-5.

本文引用的文献

1
Molecular Mechanisms of Mitochondrial Quality Control in Ischemic Cardiomyopathy.
Int J Biol Sci. 2023 Jan 1;19(2):426-448. doi: 10.7150/ijbs.76223. eCollection 2023.
2
TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury.
Metabolism. 2023 Mar;140:155383. doi: 10.1016/j.metabol.2022.155383. Epub 2023 Jan 2.
3
DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction.
J Adv Res. 2022 Nov;41:39-48. doi: 10.1016/j.jare.2022.01.014. Epub 2022 Jan 31.
4
Mitochondrial quality control mechanisms as molecular targets in diabetic heart.
Metabolism. 2022 Dec;137:155313. doi: 10.1016/j.metabol.2022.155313. Epub 2022 Sep 17.
5
Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance.
EBioMedicine. 2022 Oct;84:104260. doi: 10.1016/j.ebiom.2022.104260. Epub 2022 Sep 19.
6
Ischemic Cardiomyopathy and Heart Failure After Acute Myocardial Infarction.
Curr Cardiol Rep. 2022 Oct;24(10):1505-1515. doi: 10.1007/s11886-022-01766-6. Epub 2022 Aug 16.
8
Thymosin 4 Protects against Cardiac Damage and Subsequent Cardiac Fibrosis in Mice with Myocardial Infarction.
Cardiovasc Ther. 2022 Jun 3;2022:1308651. doi: 10.1155/2022/1308651. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验