Suppr超能文献

开发基于单体和低聚环丙烯鎓的流动电池阴极的预测溶解度模型。

Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes.

机构信息

Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States.

Joint Center for Energy Storage Research (JCESR) , 9700 S. Cass Avenue , Argonne , Illinois 60439 , United States.

出版信息

J Am Chem Soc. 2019 Jul 3;141(26):10171-10176. doi: 10.1021/jacs.9b04270. Epub 2019 Jun 20.

Abstract

The implementation of redox active organics in nonaqueous redox flow batteries requires the design of molecules that exhibit high solubility (>1 M) in all battery-relevant redox states. Methods for forecasting nonaqueous solubility would be valuable for streamlining the identification of promising structures. Herein we report the development of a workflow to parametrize and predict the solubility of conformationally flexible tris(dialkylamino)cyclopropenium (CP) radical dications. A statistical model is developed through training on monomer species. Ultimately, this model is used to predict new monomeric and dimeric CP derivatives with solubilities of >1 M in acetonitrile in all oxidation states. The most soluble CP monomer exhibits high stability to electrochemical cycling at 1 M in acetonitrile without a supporting electrolyte in a symmetrical flow cell.

摘要

在非水氧化还原流电池中实施氧化还原活性有机物需要设计在所有电池相关氧化还原态下都具有高溶解度(>1M)的分子。用于预测非水溶解度的方法对于简化有前途的结构的识别将是有价值的。在此,我们报告了一种工作流程的开发,该流程用于参数化和预测构象柔性三(二烷基氨基)环丙烯鎓(CP)自由基二阳离子的溶解度。通过对单体物种进行训练来开发统计模型。最终,该模型用于预测新的单体和二聚 CP 衍生物,它们在所有氧化态下在乙腈中的溶解度均大于 1M。最具可溶性的 CP 单体在无支持电解质的对称流电池中以 1M 在乙腈中表现出电化学循环的高稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验