Suppr超能文献

成人小气道功能障碍影响因素分析及预测模型建立

Analysis of influencing factors and a predictive model of small airway dysfunction in adults.

机构信息

Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China.

Department of Respiratory Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China.

出版信息

BMC Pulm Med. 2023 Apr 25;23(1):141. doi: 10.1186/s12890-023-02416-5.

Abstract

BACKGROUND

Small airway dysfunction (SAD) is a widespread but less typical clinical manifestation of respiratory dysfunction. In lung diseases, SAD can have a higher-than-expected impact on lung function. The aim of this study was to explore risk factors for SAD and to establish a predictive model.

METHODS

We included 1233 patients in the pulmonary function room of TangDu Hospital from June 2021 to December 2021. We divided the subjects into a small airway disorder group and a non-small airway disorder group, and all participants completed a questionnaire. We performed univariate and multivariate analyses to identify the risk factors for SAD. Multivariate logistic regression was performed to construct the nomogram. The performance of the nomogram was assessed and validated by the Area under roc curve (AUC), calibration curves, and Decision curve analysis (DCA).

RESULTS

One. The risk factors for small airway disorder were advanced age (OR = 7.772,95% CI 2.284-26.443), female sex (OR = 1.545,95% CI 1.103-2.164), family history of respiratory disease (OR = 1.508,95% CI 1.069-2.126), history of occupational dust exposure (OR = 1.723,95% CI 1.177-2.521), history of smoking (OR = 1.732,95% CI 1.231-2.436), history of pet exposure (OR = 1.499,95% CI 1.065-2.110), exposure to O (OR = 1.008,95% CI 1.003-1.013), chronic bronchitis (OR = 1.947,95% CI 1.376-2.753), emphysema (OR = 2.190,95% CI 1.355-3.539) and asthma (OR = 7.287,95% CI 3.546-14.973). 2. The AUCs of the nomogram were 0.691 in the training set and 0.716 in the validation set. Both nomograms demonstrated favourable clinical consistency. 3.There was a dose‒response relationship between cigarette smoking and SAD; however, quitting smoking did not reduce the risk of SAD.

CONCLUSION

Small airway disorders are associated with age, sex, family history of respiratory disease, occupational dust exposure, smoking history, history of pet exposure, exposure to O, chronic bronchitis, emphysema, and asthma. The nomogram based on the above results can effectively used in the preliminary risk prediction.

摘要

背景

小气道功能障碍(SAD)是一种广泛但不太典型的呼吸功能障碍的临床表现。在肺部疾病中,SAD 可能对肺功能产生比预期更高的影响。本研究旨在探讨 SAD 的危险因素,并建立预测模型。

方法

我们纳入了 2021 年 6 月至 2021 年 12 月在唐都医院肺功能室的 1233 例患者。我们将受试者分为小气道障碍组和非小气道障碍组,所有参与者都完成了一份问卷。我们进行了单因素和多因素分析,以确定 SAD 的危险因素。多因素 logistic 回归用于构建列线图。通过受试者工作特征曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)评估和验证列线图的性能。

结果

  1. 小气道障碍的危险因素包括年龄较大(OR=7.772,95%CI 2.284-26.443)、女性(OR=1.545,95%CI 1.103-2.164)、家族呼吸病史(OR=1.508,95%CI 1.069-2.126)、职业性粉尘暴露史(OR=1.723,95%CI 1.177-2.521)、吸烟史(OR=1.732,95%CI 1.231-2.436)、宠物暴露史(OR=1.499,95%CI 1.065-2.110)、O 暴露史(OR=1.008,95%CI 1.003-1.013)、慢性支气管炎(OR=1.947,95%CI 1.376-2.753)、肺气肿(OR=2.190,95%CI 1.355-3.539)和哮喘(OR=7.287,95%CI 3.546-14.973)。2. 列线图在训练集和验证集的 AUC 分别为 0.691 和 0.716。两个列线图均表现出良好的临床一致性。3. 吸烟与 SAD 之间存在剂量-反应关系;然而,戒烟并不能降低 SAD 的风险。

结论

小气道障碍与年龄、性别、家族呼吸病史、职业性粉尘暴露、吸烟史、宠物暴露史、O 暴露、慢性支气管炎、肺气肿和哮喘有关。基于上述结果的列线图可以有效地用于初步风险预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3778/10131465/bf713a3cd42d/12890_2023_2416_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验