Suppr超能文献

适应性实验室进化揭示了通过酿酒酵母中的膜亚硫酸酯泵进行的硒外排过程,以提高硒耐受性。

Adaptive Laboratory Evolution Reveals the Selenium Efflux Process To Improve Selenium Tolerance Mediated by the Membrane Sulfite Pump in Saccharomyces cerevisiae.

机构信息

Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.

College of Life Sciences, Wuhan University, Wuhan, China.

出版信息

Microbiol Spectr. 2023 Jun 15;11(3):e0132623. doi: 10.1128/spectrum.01326-23. Epub 2023 Apr 26.

Abstract

Selenium (Se) is a micronutrient in most eukaryotes, and Se-enriched yeast is the most common selenium supplement. However, selenium metabolism and transport in yeast have remained unclear, greatly hindering the application of this element. To explore the latent selenium transport and metabolism mechanisms, we performed adaptive laboratory evolution under the selective pressure of sodium selenite and successfully obtained selenium-tolerant yeast strains. Mutations in the sulfite transporter gene and its transcription factor gene were found to be responsible for the tolerance generated in the evolved strains, and the selenium efflux process mediated by was identified in this study. Moreover, we found that selenite is a competitive substrate for sulfite during the efflux process mediated by , and the expression of is induced by selenite rather than sulfite. Based on the deletion of , we increased the intracellular selenomethionine content in Se-enriched yeast. This work confirms the existence of the selenium efflux process, and our findings may benefit the optimization of Se-enriched yeast production in the future. Selenium is an essential micronutrient for mammals, and its deficiency severely threatens human health. Yeast is the model organism for studying the biological role of selenium, and Se-enriched yeast is the most popular selenium supplement to solve Se deficiency. The cognition of selenium accumulation in yeast always focuses on the reduction process. Little is known about selenium transport, especially selenium efflux, which may play a crucial part in selenium metabolism. The significance of our research is in determining the selenium efflux process in Saccharomyces cerevisiae, which will greatly enhance our knowledge of selenium tolerance and transport, facilitating the production of Se-enriched yeast. Moreover, our research further advances the understanding of the relationship between selenium and sulfur in transport.

摘要

硒(Se)是大多数真核生物中的一种必需微量元素,富硒酵母是最常见的硒补充剂。然而,酵母中的硒代谢和转运机制仍不清楚,这极大地限制了该元素的应用。为了探索潜在的硒转运和代谢机制,我们在亚硒酸钠的选择压力下进行了适应性实验室进化,成功获得了耐硒酵母菌株。研究发现,硫酸盐转运体基因 及其转录因子基因 的突变导致了进化菌株的耐硒性,并且本研究鉴定了由 介导的硒外排过程。此外,我们发现亚硒酸盐是 介导的外排过程中硫酸盐的竞争性底物,而 的表达是由亚硒酸盐诱导的,而不是由硫酸盐诱导的。基于 的缺失,我们增加了富硒酵母中的硒代蛋氨酸含量。这项工作证实了硒外排过程的存在,我们的发现可能有助于未来优化富硒酵母的生产。

硒是哺乳动物必需的微量元素,其缺乏严重威胁人类健康。酵母是研究硒生物作用的模式生物,富硒酵母是解决硒缺乏问题最受欢迎的硒补充剂。酵母中硒积累的认知一直集中在还原过程上。对硒转运,特别是硒外排的了解甚少,而硒外排可能在硒代谢中起着关键作用。我们研究的意义在于确定酿酒酵母中的硒外排过程,这将极大地增强我们对硒耐受和转运的认识,有助于富硒酵母的生产。此外,我们的研究进一步推进了对硒和硫在转运过程中关系的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8496/10269739/40d947484af9/spectrum.01326-23-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验