Suppr超能文献

完善孔图:朝向核转运机制的共识。

Improving the hole picture: towards a consensus on the mechanism of nuclear transport.

机构信息

Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, U.S.A.

出版信息

Biochem Soc Trans. 2023 Apr 26;51(2):871-886. doi: 10.1042/BST20220494.

Abstract

Nuclear pore complexes (NPCs) mediate the exchange of materials between the nucleoplasm and cytoplasm, playing a key role in the separation of nucleic acids and proteins into their required compartments. The static structure of the NPC is relatively well defined by recent cryo-EM and other studies. The functional roles of dynamic components in the pore of the NPC, phenylalanyl-glycyl (FG) repeat rich nucleoporins, is less clear because of our limited understanding of highly dynamic protein systems. These proteins form a 'restrained concentrate' which interacts with and concentrates nuclear transport factors (NTRs) to provide facilitated nucleocytoplasmic transport of cargoes. Very rapid on- and off-rates among FG repeats and NTRs supports extremely fast facilitated transport, close to the rate of macromolecular diffusion in cytoplasm, while complexes without specific interactions are entropically excluded, though details on several aspects of the transport mechanism and FG repeat behaviors remain to be resolved. However, as discussed here, new technical approaches combined with more advanced modeling methods will likely provide an improved dynamic description of NPC transport, potentially at the atomic level in the near future. Such advances are likely to be of major benefit in comprehending the roles the malfunctioning NPC plays in cancer, ageing, viral diseases, and neurodegeneration.

摘要

核孔复合体(NPC)介导核质和细胞质之间的物质交换,在将核酸和蛋白质分离到所需隔室中起着关键作用。最近的冷冻电镜和其他研究相对较好地定义了 NPC 的静态结构。由于我们对高度动态蛋白质系统的了解有限,因此 NPC 孔中动态成分(富含苯丙氨酸-甘氨酸(FG)重复的核孔蛋白)的功能作用还不太清楚。这些蛋白质形成“受约束的浓缩物”,与核转运因子(NTR)相互作用并浓缩它们,从而为货物提供易化的核质转运。FG 重复序列和 NTR 之间非常快速的结合和解离速率支持非常快速的易化转运,接近细胞质中大分子扩散的速率,而没有特定相互作用的复合物则被熵排斥,尽管转运机制的几个方面和 FG 重复序列的行为的细节仍有待解决。然而,如这里所讨论的,新的技术方法结合更先进的建模方法可能会提供 NPC 转运的改进动态描述,在不久的将来可能达到原子水平。这些进展很可能对理解 NPC 功能障碍在癌症、衰老、病毒疾病和神经退行性变中的作用具有重大意义。

相似文献

1
Improving the hole picture: towards a consensus on the mechanism of nuclear transport.
Biochem Soc Trans. 2023 Apr 26;51(2):871-886. doi: 10.1042/BST20220494.
3
C9orf72 polyPR interaction with the nuclear pore complex.
Biophys J. 2024 Oct 15;123(20):3533-3539. doi: 10.1016/j.bpj.2024.08.024. Epub 2024 Aug 30.
4
Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways.
Viruses. 2025 Jan 23;17(2):151. doi: 10.3390/v17020151.
6
Charge of karyopherins and nuclear FG-Nups are key ingredients of nucleocytoplasmic transport.
Biophys J. 2025 Jan 21;124(2):215-226. doi: 10.1016/j.bpj.2024.11.3313. Epub 2024 Nov 26.
9
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
10
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.

引用本文的文献

1
Nuclear mechanics as a determinant of nuclear pore complex plasticity.
Nat Cell Biol. 2025 Sep 19. doi: 10.1038/s41556-025-01768-w.
2
The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.
Bioinform Adv. 2025 Jun 20;5(1):vbaf142. doi: 10.1093/bioadv/vbaf142. eCollection 2025.
3
Elucidating the nanoscopic organization and dynamics of the nuclear pore complex.
Nucleus. 2025 Dec;16(1):2510106. doi: 10.1080/19491034.2025.2510106. Epub 2025 Jun 4.
4
Role of pore dilation in molecular transport through the nuclear pore complex: Insights from polymer scaling theory.
PLoS Comput Biol. 2025 Apr 7;21(4):e1012909. doi: 10.1371/journal.pcbi.1012909. eCollection 2025 Apr.
5
Imaging-based quantitative assessment of biomolecular condensates in vitro and in cells.
J Biol Chem. 2025 Feb;301(2):108130. doi: 10.1016/j.jbc.2024.108130. Epub 2024 Dec 24.
6
Coacervate-pore complexes for selective molecular transport and dynamic reconfiguration.
Nat Commun. 2024 Nov 20;15(1):10069. doi: 10.1038/s41467-024-54510-9.
7
Regulating transport efficiency through the nuclear pore complex: The role of binding affinity with FG-Nups.
Mol Biol Cell. 2024 Dec 1;35(12):ar149. doi: 10.1091/mbc.E24-05-0224. Epub 2024 Oct 30.
8
Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
Nucleus. 2024 Dec;15(1):2399247. doi: 10.1080/19491034.2024.2399247. Epub 2024 Sep 16.
9
Protein folding and quality control during nuclear transport.
Curr Opin Cell Biol. 2024 Oct;90:102407. doi: 10.1016/j.ceb.2024.102407. Epub 2024 Aug 13.
10
Pre-ribosomal particles from nucleoli to cytoplasm.
Nucleus. 2024 Dec;15(1):2373052. doi: 10.1080/19491034.2024.2373052. Epub 2024 Jun 28.

本文引用的文献

1
Self-regulation of the nuclear pore complex enables clogging-free crowded transport.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2212874120. doi: 10.1073/pnas.2212874120. Epub 2023 Feb 9.
2
Protein import into peroxisomes occurs through a nuclear pore-like phase.
Science. 2022 Dec 16;378(6625):eadf3971. doi: 10.1126/science.adf3971.
3
Pore performance: artificial nanoscale constructs that mimic the biomolecular transport of the nuclear pore complex.
Nanoscale Adv. 2022 Sep 13;4(23):4925-4937. doi: 10.1039/d2na00389a. eCollection 2022 Nov 22.
4
The chaperone DNAJB6 surveils FG-nucleoporins and is required for interphase nuclear pore complex biogenesis.
Nat Cell Biol. 2022 Nov;24(11):1584-1594. doi: 10.1038/s41556-022-01010-x. Epub 2022 Oct 27.
5
Atypical nuclear envelope condensates linked to neurological disorders reveal nucleoporin-directed chaperone activities.
Nat Cell Biol. 2022 Nov;24(11):1630-1641. doi: 10.1038/s41556-022-01001-y. Epub 2022 Oct 27.
6
A simple thermodynamic description of phase separation of Nup98 FG domains.
Nat Commun. 2022 Oct 18;13(1):6172. doi: 10.1038/s41467-022-33697-9.
7
Molecular interactions of FG nucleoporin repeats at high resolution.
Nat Chem. 2022 Nov;14(11):1278-1285. doi: 10.1038/s41557-022-01035-7. Epub 2022 Sep 22.
8
Micellization: A new principle in the formation of biomolecular condensates.
Front Mol Biosci. 2022 Aug 29;9:974772. doi: 10.3389/fmolb.2022.974772. eCollection 2022.
9
Structure and Function of the Nuclear Pore Complex.
Cold Spring Harb Perspect Biol. 2022 Dec 1;14(12):a041264. doi: 10.1101/cshperspect.a041264.
10
Nuclear Pore Dysfunction in Neurodegeneration.
Neurotherapeutics. 2022 Jul;19(4):1050-1060. doi: 10.1007/s13311-022-01293-w. Epub 2022 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验