Sarraf Namita, Rodriguez Kellen R, Qian Lulu
Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.
Business Economics and Management, California Institute of Technology, Pasadena, CA 91125, USA.
Sci Robot. 2023 Apr 26;8(77):eadf1511. doi: 10.1126/scirobotics.adf1511.
The power of natural evolution lies in the adaptability of biological organisms but is constrained by the time scale of genetics and reproduction. Engineeringartificial molecular machines should not only include adaptability as a core feature but also apply it within a larger design space and at a faster time scale. A lesson from engineering electromechanical robots is that modular robots can perform diverse functions through self-reconfiguration, a large-scale form of adaptation. Molecular machines made of modular, reconfigurable components may form the basis for dynamic self-reprogramming in future synthetic cells. To achieve modular reconfiguration in DNA origami assemblies, we previously developed a tile displacement mechanism in which an invader tile replaces another tile in an array with controlled kinetics. Here, we establish design principles for simultaneous reconfigurations in tile assemblies using complex invaders with distinct shapes. We present toehold and branch migration domain configurations that expand the design space of tile displacement reactions by two orders of magnitude. We demonstrate the construction of multitile invaders with fixed and variable sizes and controlled size distributions. We investigate the growth of three-dimensional (3D) barrel structures with variable cross sections and introduce a mechanism for reconfiguring them into 2D structures. Last, we show an example of a sword-shaped assembly transforming into a snake-shaped assembly, illustrating two independent tile displacement reactions occurring concurrently with minimum cross-talk. This work serves as a proof of concept that tile displacement could be a fundamental mechanism for modular reconfiguration robust to temperature and tile concentration.
自然进化的力量在于生物有机体的适应性,但受到遗传学和繁殖时间尺度的限制。工程化人工分子机器不仅应将适应性作为核心特征,还应在更大的设计空间内并以更快的时间尺度应用它。从工程机电机器人中得到的一个经验是,模块化机器人可以通过自我重新配置来执行各种功能,这是一种大规模的适应形式。由模块化、可重新配置组件制成的分子机器可能构成未来合成细胞中动态自我重新编程的基础。为了在DNA折纸组件中实现模块化重新配置,我们之前开发了一种瓦片置换机制,其中入侵瓦片以可控的动力学取代阵列中的另一个瓦片。在这里,我们建立了使用具有不同形状的复杂入侵者在瓦片组件中同时进行重新配置的设计原则。我们展示了引发链和分支迁移结构域配置,将瓦片置换反应的设计空间扩大了两个数量级。我们展示了具有固定和可变大小以及可控大小分布的多瓦片入侵者的构建。我们研究了具有可变横截面的三维(3D)桶状结构的生长,并引入了一种将它们重新配置为二维结构的机制。最后,我们展示了一个剑形组件转变为蛇形组件的例子,说明了两个独立的瓦片置换反应同时发生且串扰最小。这项工作证明了瓦片置换可能是一种对温度和瓦片浓度具有鲁棒性的模块化重新配置的基本机制。