Wei Bryan, Ong Luvena L, Chen Jeffrey, Jaffe Alexander S, Yin Peng
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 (USA) http://molecular-systems.net http://yin.hms.harvard.edu; Department of Systems Biology, Harvard Medical School, Boston, MA 02115 (USA).
Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7475-9. doi: 10.1002/anie.201402437. Epub 2014 Jun 4.
Nucleic acids have been used to create diverse synthetic structural and dynamic systems. Toehold-mediated strand displacement has enabled the construction of sophisticated circuits, motors, and molecular computers. Yet it remains challenging to demonstrate complex structural reconfiguration in which a structure changes from a starting shape to another arbitrarily prescribed shape. To address this challenge, we have developed a general structural-reconfiguration method that utilizes the modularly interconnected architecture of single-stranded DNA tile and brick structures. The removal of one component strand reveals a newly exposed toehold on a neighboring strand, thus enabling us to remove regions of connected component strands without the need to modify the strands with predesigned external toeholds. By using this method, we reconfigured a two-dimensional rectangular DNA canvas into diverse prescribed shapes. We also used this method to reconfigure a three-dimensional DNA cuboid.
核酸已被用于构建各种合成结构和动态系统。引发链介导的链置换使得构建复杂的电路、马达和分子计算机成为可能。然而,要证明复杂的结构重构,即结构从起始形状转变为任意规定的形状,仍然具有挑战性。为了应对这一挑战,我们开发了一种通用的结构重构方法,该方法利用单链DNA瓦片和砖块结构的模块化互连架构。去除一条组成链会在相邻链上暴露出一个新的引发端,从而使我们能够去除相连组成链的区域,而无需用预先设计的外部引发端对链进行修饰。通过使用这种方法,我们将二维矩形DNA画布重新配置成各种规定的形状。我们还使用这种方法对三维DNA长方体进行了重构。