Suppr超能文献

在医学中利用联邦学习增强数字孪生。

Augmenting digital twins with federated learning in medicine.

机构信息

Department of Computer Science, Stanford University, CA 94305, USA.

Stanford Center for Biomedical Informatics Research, Stanford University, CA 94305, USA.

出版信息

Lancet Digit Health. 2023 May;5(5):e251-e253. doi: 10.1016/S2589-7500(23)00044-4.

Abstract

Providing increasingly personalized treatments to patients is a major goal of precision medicine, and digital twins are an emerging paradigm to support this goal. A clinical digital twin is a digital representation of a patient and can be used to deliver personalized treatment recommendations. However, the centralized data collection to support and train digital twin models is already brushing up against patient privacy restrictions. We posit that the use of federated learning, an approach to decentralized machine learning model training, can support digital twins’ performance for clinical applications. We emphasize that the combination of the two could alleviate privacy concerns while bolstering machine learning model performance and resulting predictions.

摘要

为患者提供越来越个性化的治疗是精准医学的主要目标,而数字孪生是支持这一目标的新兴范例。临床数字孪生是患者的数字表示,可以用于提供个性化的治疗建议。然而,支持和训练数字孪生模型的集中式数据收集已经触及到患者隐私限制。我们假设使用联邦学习(一种去中心化机器学习模型训练方法)可以支持数字孪生在临床应用中的性能。我们强调,这两者的结合可以减轻隐私问题,同时提高机器学习模型的性能和预测结果。

相似文献

1
Augmenting digital twins with federated learning in medicine.在医学中利用联邦学习增强数字孪生。
Lancet Digit Health. 2023 May;5(5):e251-e253. doi: 10.1016/S2589-7500(23)00044-4.
2
Federated learning for molecular discovery.分子发现的联邦学习。
Curr Opin Struct Biol. 2023 Apr;79:102545. doi: 10.1016/j.sbi.2023.102545. Epub 2023 Feb 16.

本文引用的文献

2
The Digital Twin in Medicine: A Key to the Future of Healthcare?医学中的数字孪生:医疗保健未来的关键?
Front Med (Lausanne). 2022 Jul 14;9:907066. doi: 10.3389/fmed.2022.907066. eCollection 2022.
5
The future of digital health with federated learning.联合学习助力数字健康的未来。
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验