Department of Computer Science, Stanford University, CA 94305, USA.
Stanford Center for Biomedical Informatics Research, Stanford University, CA 94305, USA.
Lancet Digit Health. 2023 May;5(5):e251-e253. doi: 10.1016/S2589-7500(23)00044-4.
Providing increasingly personalized treatments to patients is a major goal of precision medicine, and digital twins are an emerging paradigm to support this goal. A clinical digital twin is a digital representation of a patient and can be used to deliver personalized treatment recommendations. However, the centralized data collection to support and train digital twin models is already brushing up against patient privacy restrictions. We posit that the use of federated learning, an approach to decentralized machine learning model training, can support digital twins’ performance for clinical applications. We emphasize that the combination of the two could alleviate privacy concerns while bolstering machine learning model performance and resulting predictions.
为患者提供越来越个性化的治疗是精准医学的主要目标,而数字孪生是支持这一目标的新兴范例。临床数字孪生是患者的数字表示,可以用于提供个性化的治疗建议。然而,支持和训练数字孪生模型的集中式数据收集已经触及到患者隐私限制。我们假设使用联邦学习(一种去中心化机器学习模型训练方法)可以支持数字孪生在临床应用中的性能。我们强调,这两者的结合可以减轻隐私问题,同时提高机器学习模型的性能和预测结果。