Suppr超能文献

基于人工智能的心电图用于鉴别房室折返性心动过速与房室结折返性心动过速。

Artificial intelligence-enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia.

作者信息

Sau Arunashis, Ibrahim Safi, Kramer Daniel B, Waks Jonathan W, Qureshi Norman, Koa-Wing Michael, Keene Daniel, Malcolme-Lawes Louisa, Lefroy David C, Linton Nicholas W F, Lim Phang Boon, Varnava Amanda, Whinnett Zachary I, Kanagaratnam Prapa, Mandic Danilo, Peters Nicholas S, Ng Fu Siong

机构信息

National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom.

出版信息

Cardiovasc Digit Health J. 2023 Jan 31;4(2):60-67. doi: 10.1016/j.cvdhj.2023.01.004. eCollection 2023 Apr.

Abstract

BACKGROUND

Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.

METHODS

We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.

RESULTS

The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.

CONCLUSION

We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.

摘要

背景

从室上性心动过速的12导联心电图(ECG)准确确定心律失常机制具有挑战性。我们假设可以训练一个卷积神经网络(CNN),以有创电生理(EP)研究结果作为金标准,从12导联心电图中对房室折返性心动过速(AVRT)和房室结折返性心动过速(AVNRT)进行分类。

方法

我们使用124例接受EP研究并最终诊断为AVRT或AVNRT的患者的数据训练了一个CNN。总共4962个5秒的12导联心电图片段用于训练。根据EP研究结果,每个病例被标记为AVRT或AVNRT。针对31例患者的保留测试集评估模型性能,并与现有的手动算法进行比较。

结果

该模型区分AVRT和AVNRT的准确率为77.4%。受试者工作特征曲线下面积为0.80。相比之下,现有的手动算法在同一测试集上的准确率为67.7%。显著性映射表明该网络使用心电图的预期部分进行诊断;这些是可能包含逆行P波的QRS波群。

结论

我们描述了第一个经过训练以区分AVRT和AVNRT的神经网络。从12导联心电图准确诊断心律失常机制有助于术前咨询、同意和手术规划。我们神经网络目前的准确率一般,但通过更大的训练数据集可能会提高。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验