Suppr超能文献

基于视频分类模型的 CT 扫描三维深度学习特征用于癌症预后:一项多数据集可行性研究。

Using 3D deep features from CT scans for cancer prognosis based on a video classification model: A multi-dataset feasibility study.

机构信息

Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Netherlands.

出版信息

Med Phys. 2023 Jul;50(7):4220-4233. doi: 10.1002/mp.16430. Epub 2023 Apr 27.

Abstract

BACKGROUND

Cancer prognosis before and after treatment is key for patient management and decision making. Handcrafted imaging biomarkers-radiomics-have shown potential in predicting prognosis.

PURPOSE

However, given the recent progress in deep learning, it is timely and relevant to pose the question: could deep learning based 3D imaging features be used as imaging biomarkers and outperform radiomics?

METHODS

Effectiveness, reproducibility in test/retest, across modalities, and correlation of deep features with clinical features such as tumor volume and TNM staging were tested in this study. Radiomics was introduced as the reference image biomarker. For deep feature extraction, we transformed the CT scans into videos, and we adopted the pre-trained Inflated 3D ConvNet (I3D) video classification network as the architecture. We used four datasets-LUNG 1 (n = 422), LUNG 4 (n = 106), OPC (n = 605), and H&N 1 (n = 89)-with 1270 samples from different centers and cancer types-lung and head and neck cancer-to test deep features' predictiveness and two additional datasets to assess the reproducibility of deep features.

RESULTS

Support Vector Machine-Recursive Feature Elimination (SVM-RFE) selected top 100 deep features achieved a concordance index (CI) of 0.67 in survival prediction in LUNG 1, 0.87 in LUNG 4, 0.76 in OPC, and 0.87 in H&N 1, while SVM-RFE selected top 100 radiomics achieved CIs of 0.64, 0.77, 0.73, and 0.74, respectively, all statistically significant differences (p < 0.01, Wilcoxon's test). Most selected deep features are not correlated with tumor volume and TNM staging. However, full radiomics features show higher reproducibility than full deep features in a test/retest setting (0.89 vs. 0.62, concordance correlation coefficient).

CONCLUSION

The results show that deep features can outperform radiomics while providing different views for tumor prognosis compared to tumor volume and TNM staging. However, deep features suffer from lower reproducibility than radiomic features and lack the interpretability of the latter.

摘要

背景

治疗前后的癌症预后是患者管理和决策的关键。手工制作的成像生物标志物——放射组学——已显示出预测预后的潜力。

目的

然而,鉴于深度学习的最新进展,提出这样一个问题是及时且相关的:基于深度学习的 3D 成像特征是否可用作成像生物标志物并优于放射组学?

方法

本研究测试了深度学习特征的有效性、在测试/复测、跨模态以及与肿瘤体积和 TNM 分期等临床特征的相关性。放射组学被引入作为参考成像生物标志物。为了提取深度特征,我们将 CT 扫描转换为视频,并采用预先训练的 Inflated 3D ConvNet(I3D)视频分类网络作为架构。我们使用来自不同中心和癌症类型(肺和头颈部癌症)的四个数据集-LUNG 1(n=422)、LUNG 4(n=106)、OPC(n=605)和 H&N 1(n=89)-来测试深度特征的预测能力,并使用另外两个数据集来评估深度特征的可重复性。

结果

支持向量机-递归特征消除(SVM-RFE)选择的前 100 个深度特征在 LUNG 1 的生存预测中实现了 0.67 的一致性指数(CI),在 LUNG 4 中实现了 0.87,在 OPC 中实现了 0.76,在 H&N 1 中实现了 0.87,而 SVM-RFE 选择的前 100 个放射组学特征的 CI 分别为 0.64、0.77、0.73 和 0.74,均具有统计学意义差异(p<0.01,Wilcoxon 检验)。大多数选择的深度特征与肿瘤体积和 TNM 分期无关。然而,在测试/复测设置中,全放射组学特征比全深度特征具有更高的可重复性(0.89 与 0.62,一致性相关系数)。

结论

结果表明,与肿瘤体积和 TNM 分期相比,深度特征可以优于放射组学,同时为肿瘤预后提供不同的视角。然而,深度特征的可重复性低于放射组学特征,并且缺乏后者的可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验