文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种整合放射组学和深度学习的堆叠集成框架,用于头颈癌的预后预测。

A stacking ensemble framework integrating radiomics and deep learning for prognostic prediction in head and neck cancer.

作者信息

Wang Bingzhen, Liu Jinghua, Zhang Xiaolei, Lin Jianpeng, Li Shuyan, Wang Zhongxiao, Cao Zhendong, Wen Dong, Liu Tiange, Ramli Hafiz Rashidi Harun, Harith Hazreen Haizi, Hasan Wan Zuha Wan, Dong Xianling

机构信息

Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.

Department of Biomedical Engineering, Chengde Medical University, Chengde City, Hebei Province, China.

出版信息

Radiat Oncol. 2025 Aug 13;20(1):127. doi: 10.1186/s13014-025-02695-8.


DOI:10.1186/s13014-025-02695-8
PMID:40804402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12351975/
Abstract

BACKGROUND: Radiomics models frequently face challenges related to reproducibility and robustness. To address these issues, we propose a multimodal, multi-model fusion framework utilizing stacking ensemble learning for prognostic prediction in head and neck cancer (HNC). This approach seeks to improve the accuracy and reliability of survival predictions. METHODS: A total of 806 cases from nine centers were collected; 143 cases from two centers were assigned as the external validation cohort, while the remaining 663 were stratified and randomly split into training (n = 530) and internal validation (n = 133) sets. Radiomics features were extracted according to IBSI standards, and deep learning features were obtained using a 3D DenseNet-121 model. Following feature selection, the selected features were input into Cox, SVM, RSF, DeepCox, and DeepSurv models. A stacking fusion strategy was employed to develop the prognostic model. Model performance was evaluated using Kaplan-Meier survival curves and time-dependent ROC curves. RESULTS: On the external validation set, the model using combined PET and CT radiomics features achieved superior performance compared to single-modality models, with the RSF model obtaining the highest concordance index (C-index) of 0.7302. When using deep features extracted by 3D DenseNet-121, the PET + CT-based models demonstrated significantly improved prognostic accuracy, with Deepsurv and DeepCox achieving C-indices of 0.9217 and 0.9208, respectively. In stacking models, the PET + CT model using only radiomics features reached a C-index of 0.7324, while the deep feature-based stacking model achieved 0.9319. The best performance was obtained by the multi-feature fusion model, which integrated both radiomics and deep learning features from PET and CT, yielding a C-index of 0.9345. Kaplan-Meier survival analysis further confirmed the fusion model's ability to distinguish between high-risk and low-risk groups. CONCLUSION: The stacking-based ensemble model demonstrates superior performance compared to individual machine learning models, markedly improving the robustness of prognostic predictions.

摘要

背景:放射组学模型经常面临与可重复性和稳健性相关的挑战。为了解决这些问题,我们提出了一种多模态、多模型融合框架,利用堆叠集成学习对头颈部癌(HNC)进行预后预测。这种方法旨在提高生存预测的准确性和可靠性。 方法:收集了来自9个中心的806例病例;将来自2个中心的143例病例分配为外部验证队列,其余663例病例进行分层并随机分为训练集(n = 530)和内部验证集(n = 133)。根据IBSI标准提取放射组学特征,并使用3D DenseNet - 121模型获得深度学习特征。在特征选择之后,将选定的特征输入到Cox、支持向量机(SVM)、随机生存森林(RSF)、深度Cox和深度生存(DeepSurv)模型中。采用堆叠融合策略来开发预后模型。使用Kaplan - Meier生存曲线和时间依赖性ROC曲线评估模型性能。 结果:在外部验证集上,与单模态模型相比,使用PET和CT联合放射组学特征的模型表现更优,RSF模型获得了最高的一致性指数(C指数),为0.7302。当使用由3D DenseNet - 121提取的深度特征时,基于PET + CT的模型显示出显著提高的预后准确性,DeepSurv和深度Cox的C指数分别达到0.9217和0.9208。在堆叠模型中,仅使用放射组学特征的PET + CT模型的C指数达到0.7324,而基于深度特征的堆叠模型达到0.9319。多特征融合模型表现最佳,该模型整合了来自PET和CT的放射组学和深度学习特征,C指数为0.9345。Kaplan - Meier生存分析进一步证实了融合模型区分高风险和低风险组的能力。 结论:与单个机器学习模型相比,基于堆叠的集成模型表现出卓越的性能,显著提高了预后预测的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/3a52cad86fdd/13014_2025_2695_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/3ad93750f375/13014_2025_2695_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/f9d062a7d841/13014_2025_2695_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/304702d32a91/13014_2025_2695_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/5614db613bc7/13014_2025_2695_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/e6be8a2ac561/13014_2025_2695_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/1c9318fea23b/13014_2025_2695_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/7c4d3de90e74/13014_2025_2695_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/3a52cad86fdd/13014_2025_2695_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/3ad93750f375/13014_2025_2695_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/f9d062a7d841/13014_2025_2695_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/304702d32a91/13014_2025_2695_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/5614db613bc7/13014_2025_2695_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/e6be8a2ac561/13014_2025_2695_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/1c9318fea23b/13014_2025_2695_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/7c4d3de90e74/13014_2025_2695_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/12351975/3a52cad86fdd/13014_2025_2695_Fig8_HTML.jpg

相似文献

[1]
A stacking ensemble framework integrating radiomics and deep learning for prognostic prediction in head and neck cancer.

Radiat Oncol. 2025-8-13

[2]
Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Acad Radiol. 2025-5-5

[3]
Enhancing brain tumor classification by integrating radiomics and deep learning features: A comprehensive study utilizing ensemble methods on MRI scans.

J Xray Sci Technol. 2025-1

[4]
Prognostic power of radiomics in head and neck cancers: Insights from a meta-analysis.

Comput Methods Programs Biomed. 2025-4

[5]
[Preoperative discrimination of colorectal mucinous adenocarcinoma using enhanced CT-based radiomics and deep learning fusion model].

Zhonghua Wai Ke Za Zhi. 2025-8-20

[6]
18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Med Oncol. 2025-8-11

[7]
Organomics: A Concept Reflecting the Importance of PET/CT Healthy Organ Radiomics in Non-Small Cell Lung Cancer Prognosis Prediction Using Machine Learning.

Clin Nucl Med. 2024-10-1

[8]
Deep Learning Radiomics Model Based on Computed Tomography Image for Predicting the Classification of Osteoporotic Vertebral Fractures: Algorithm Development and Validation.

JMIR Med Inform. 2025-8-29

[9]
Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models.

Med Phys. 2024-9

[10]
Integrative radiomics of intra- and peri-tumoral features for enhanced risk prediction in thymic tumors: a multimodal analysis of tumor microenvironment contributions.

BMC Med Imaging. 2025-7-17

本文引用的文献

[1]
A review of convolutional neural network based methods for medical image classification.

Comput Biol Med. 2025-2

[2]
Artificial intelligence improves risk prediction in cardiovascular disease.

Geroscience. 2024-11-22

[3]
AI Survival Prediction Modeling: The Importance of Considering Treatments and Changes in Health Status over Time.

Cancers (Basel). 2024-10-18

[4]
ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.

Eur Radiol. 2025-3

[5]
Multicentric study on the reproducibility and robustness of PET-based radiomics features with a realistic activity painting phantom.

PLoS One. 2024

[6]
Application of multimodal deep learning and multi-instance learning fusion techniques in predicting STN-DBS outcomes for Parkinson's disease patients.

Neurotherapeutics. 2024-10

[7]
One novel transfer learning-based CLIP model combined with self-attention mechanism for differentiating the tumor-stroma ratio in pancreatic ductal adenocarcinoma.

Radiol Med. 2024-11

[8]
Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme.

Cancers (Basel). 2024-9-30

[9]
Stacking based ensemble learning framework for identification of nitrotyrosine sites.

Comput Biol Med. 2024-12

[10]
Multi-center external validation of an automated method segmenting and differentiating atypical lipomatous tumors from lipomas using radiomics and deep-learning on MRI.

EClinicalMedicine. 2024-9-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索