Suppr超能文献

深度学习 PET/CT 影像组学整合临床数据:一项区分结核结节和肺癌的可行性研究。

Deep learning PET/CT-based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer.

机构信息

Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.

Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China.

出版信息

Thorac Cancer. 2023 Jul;14(19):1802-1811. doi: 10.1111/1759-7714.14924. Epub 2023 May 14.

Abstract

BACKGROUND

Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information.

METHODS

Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics.

RESULTS

The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models.

CONCLUSION

The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.

摘要

背景

放射组学诊断模型通常仅考虑单一维度的信息,导致其诊断准确性和可靠性受限。将多个维度的信息整合到深度学习模型中,有可能提高其诊断能力。本研究旨在评估基于深度学习特征、放射组学特征和临床信息的深度学习模型在区分肺结核(TB)结节和肺癌(LC)中的性能。

方法

收集了 97 例 LC 患者和 77 例 TB 结节患者的正电子发射断层扫描(PET)和计算机断层扫描(CT)图像数据。使用 pyradiomics 平台从 PET 和 CT 成像中提取了 100 个放射组学特征,并通过残差神经网络方法获得了 2048 个深度学习特征。包括以放射组学特征作为输入的传统机器学习模型(传统放射组学)、以图像特征单独输入的深度学习模型(深度卷积神经网络 [DCNN])、以放射组学特征和深度学习特征作为两个输入的深度学习模型(放射组学-DCNN)和以放射组学特征和深度学习特征及临床信息作为输入的深度学习模型(综合模型)。使用曲线下面积(AUC)、敏感性、准确性、特异性和 F1 评分评估模型。

结果

TB 结节和 LC 的分类结果表明,综合模型的 AUC 为 0.84(0.82-0.88),敏感性为 0.85(0.80-0.88),特异性为 0.84(0.83-0.87),优于其他模型。

结论

综合模型是 TB 结节和实性 LC 诊断的最佳分类模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb5/10317593/85fe44b420f9/TCA-14-1802-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验