Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain.
Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Aragón Institute of Health Research (IIS), Spain.
Comput Biol Med. 2023 Jun;159:106897. doi: 10.1016/j.compbiomed.2023.106897. Epub 2023 Apr 18.
Spheroids are in vitro quasi-spherical structures of cell aggregates, eventually cultured within a hydrogel matrix, that are used, among other applications, as a technological platform to investigate tumor formation and evolution. Several interesting features can be replicated using this methodology, such as cell communication mechanisms, the effect of gradients of nutrients, or the creation of realistic 3D biological structures. The main objective of this work is to link the spheroid evolution with the mechanical activity of cells, coupled with nutrient consumption and the subsequent cell dynamics.
We propose a continuum mechanobiological model which accounts for the most relevant phenomena that take place in tumor spheroid evolution under in vitro suspension, namely, nutrient diffusion in the spheroid, kinetics of cellular growth and death, and mechanical interactions among the cells. The model is qualitatively validated, after calibration of the model parameters, versus in vitro experiments of spheroids of different glioblastoma cell lines.
Our model is able to explain in a novel way quite different setups, such as spheroid growth (up to six times the initial configuration for U-87 MG cell line) or shrinking (almost half of the initial configuration for U-251 MG cell line); as the result of the mechanical interplay of cells driven by cellular evolution.
Glioblastoma tumor spheroid evolution is driven by mechanical interactions of the cell aggregate and the dynamical evolution of the cell population. All this information can be used to further investigate mechanistic effects in the evolution of tumors and their role in cancer disease.
球体是细胞聚集体的体外类球形结构,最终在水凝胶基质中培养,除其他应用外,还可作为一种技术平台来研究肿瘤的形成和演变。使用这种方法可以复制许多有趣的特征,例如细胞通讯机制、营养物质梯度的影响,或真实 3D 生物结构的创建。这项工作的主要目的是将球体的演变与细胞的机械活动联系起来,同时考虑营养物质的消耗以及随后的细胞动力学。
我们提出了一个连续体力学生物学模型,该模型考虑了在体外悬浮状态下肿瘤球体演变过程中发生的最相关现象,即球体中的营养物质扩散、细胞生长和死亡的动力学以及细胞之间的力学相互作用。在对不同胶质母细胞瘤细胞系的球体进行体外实验进行了模型参数校准之后,对我们的模型进行了定性验证。
我们的模型能够以新颖的方式解释不同的情况,例如球体的生长(U-87 MG 细胞系可达初始配置的六倍)或收缩(U-251 MG 细胞系几乎为初始配置的一半);这是由细胞进化驱动的细胞聚集的力学相互作用的结果。
胶质母细胞瘤肿瘤球体的演变是由细胞聚集体的力学相互作用和细胞群体的动态演变驱动的。所有这些信息都可用于进一步研究肿瘤演变中的机械效应及其在癌症疾病中的作用。