Suppr超能文献

基于Transformer的分类特征表示在弥漫性大B细胞淋巴瘤治疗中的生存预测

Survival Prediction Using Transformer-Based Categorical Feature Representation in the Treatment of Diffuse Large B-Cell Lymphoma.

作者信息

Pant Sudarshan, Kang Sae-Ryung, Lee Minhee, Phuc Pham-Sy, Yang Hyung-Jeong, Yang Deok-Hwan

机构信息

Department of Artificial Intelligence Convergence, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea.

Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea.

出版信息

Healthcare (Basel). 2023 Apr 19;11(8):1171. doi: 10.3390/healthcare11081171.

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of lymphoma, and accurate survival prediction is crucial for treatment decisions. This study aims to develop a robust survival prediction strategy to integrate various risk factors effectively, including clinical risk factors and Deauville scores in positron-emission tomography/computed tomography at different treatment stages using a deep-learning-based approach. We conduct a multi-institutional study on 604 DLBCL patients' clinical data and validate the model on 220 patients from an independent institution. We propose a survival prediction model using transformer architecture and a categorical-feature-embedding technique that can handle high-dimensional and categorical data. Comparison with deep-learning survival models such as DeepSurv, CoxTime, and CoxCC based on the concordance index (C-index) and the mean absolute error (MAE) demonstrates that the categorical features obtained using transformers improved the MAE and the C-index. The proposed model outperforms the best-performing existing method by approximately 185 days in terms of the MAE for survival time estimation on the testing set. Using the Deauville score obtained during treatment resulted in a 0.02 improvement in the C-index and a 53.71-day improvement in the MAE, highlighting its prognostic importance. Our deep-learning model could improve survival prediction accuracy and treatment personalization for DLBCL patients.

摘要

弥漫性大B细胞淋巴瘤(DLBCL)是一种常见且侵袭性的淋巴瘤亚型,准确的生存预测对于治疗决策至关重要。本研究旨在开发一种强大的生存预测策略,以有效整合各种风险因素,包括临床风险因素以及不同治疗阶段正电子发射断层扫描/计算机断层扫描中的Deauville评分,采用基于深度学习的方法。我们对604例DLBCL患者的临床数据进行了多机构研究,并在来自独立机构的220例患者中对模型进行了验证。我们提出了一种使用Transformer架构和分类特征嵌入技术的生存预测模型,该技术可以处理高维和分类数据。与基于一致性指数(C-index)和平均绝对误差(MAE)的深度学习生存模型(如DeepSurv、CoxTime和CoxCC)进行比较表明,使用Transformer获得的分类特征改善了MAE和C-index。在测试集上,所提出的模型在生存时间估计的MAE方面比表现最佳的现有方法高出约185天。使用治疗期间获得的Deauville评分导致C-index提高0.02,MAE提高53.71天,突出了其预后重要性。我们的深度学习模型可以提高DLBCL患者的生存预测准确性和治疗个性化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2467/10137756/5e57c2f947a2/healthcare-11-01171-g001.jpg

相似文献

3
Early risk stratification for diffuse large B-cell lymphoma integrating interim Deauville score and International Prognostic Index.
Ann Hematol. 2019 Dec;98(12):2739-2748. doi: 10.1007/s00277-019-03834-4. Epub 2019 Nov 11.
5
Diffuse large B-cell lymphoma segmentation in PET-CT images via hybrid learning for feature fusion.
Med Phys. 2021 Jul;48(7):3665-3678. doi: 10.1002/mp.14847. Epub 2021 Jun 22.
9
Identification and Validation of a Prognostic Prediction Model in Diffuse Large B-Cell Lymphoma.
Front Endocrinol (Lausanne). 2022 Apr 14;13:846357. doi: 10.3389/fendo.2022.846357. eCollection 2022.

引用本文的文献

1
Explainable transformer-based deep survival analysis in childhood acute lymphoblastic leukemia.
Comput Biol Med. 2025 Jun;191:110118. doi: 10.1016/j.compbiomed.2025.110118. Epub 2025 Apr 7.
2
Survival prediction landscape: an in-depth systematic literature review on activities, methods, tools, diseases, and databases.
Front Artif Intell. 2024 Jul 3;7:1428501. doi: 10.3389/frai.2024.1428501. eCollection 2024.

本文引用的文献

1
OBLIQUE RANDOM SURVIVAL FORESTS.
Ann Appl Stat. 2019 Sep;13(3):1847-1883. doi: 10.1214/19-aoas1261. Epub 2019 Oct 17.
2
Diffuse large B-cell lymphoma: new targets and novel therapies.
Blood Cancer J. 2021 Apr 5;11(4):68. doi: 10.1038/s41408-021-00456-w.
3
Prognostic Value of Baseline Radiomic Features of F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma.
Diagnostics (Basel). 2020 Dec 28;11(1):36. doi: 10.3390/diagnostics11010036.
4
CAR-T Cell Therapy in Diffuse Large B Cell Lymphoma: Hype and Hope.
Hemasphere. 2019 Mar 8;3(2):e185. doi: 10.1097/HS9.0000000000000185. eCollection 2019 Apr.
5
A Bayesian Network Interpretation of the Cox's Proportional Hazard Model.
Int J Approx Reason. 2018 Dec;103:195-211. doi: 10.1016/j.ijar.2018.09.007. Epub 2018 Oct 5.
6
FDG-PET/CT in the management of lymphomas: current status and future directions.
J Intern Med. 2018 Oct;284(4):358-376. doi: 10.1111/joim.12813. Epub 2018 Jul 24.
7
DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network.
BMC Med Res Methodol. 2018 Feb 26;18(1):24. doi: 10.1186/s12874-018-0482-1.
9
Non-Hodgkin lymphoma.
Lancet. 2012 Sep 1;380(9844):848-57. doi: 10.1016/S0140-6736(12)60605-9. Epub 2012 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验