Pant Sudarshan, Kang Sae-Ryung, Lee Minhee, Phuc Pham-Sy, Yang Hyung-Jeong, Yang Deok-Hwan
Department of Artificial Intelligence Convergence, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea.
Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea.
Healthcare (Basel). 2023 Apr 19;11(8):1171. doi: 10.3390/healthcare11081171.
Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of lymphoma, and accurate survival prediction is crucial for treatment decisions. This study aims to develop a robust survival prediction strategy to integrate various risk factors effectively, including clinical risk factors and Deauville scores in positron-emission tomography/computed tomography at different treatment stages using a deep-learning-based approach. We conduct a multi-institutional study on 604 DLBCL patients' clinical data and validate the model on 220 patients from an independent institution. We propose a survival prediction model using transformer architecture and a categorical-feature-embedding technique that can handle high-dimensional and categorical data. Comparison with deep-learning survival models such as DeepSurv, CoxTime, and CoxCC based on the concordance index (C-index) and the mean absolute error (MAE) demonstrates that the categorical features obtained using transformers improved the MAE and the C-index. The proposed model outperforms the best-performing existing method by approximately 185 days in terms of the MAE for survival time estimation on the testing set. Using the Deauville score obtained during treatment resulted in a 0.02 improvement in the C-index and a 53.71-day improvement in the MAE, highlighting its prognostic importance. Our deep-learning model could improve survival prediction accuracy and treatment personalization for DLBCL patients.
弥漫性大B细胞淋巴瘤(DLBCL)是一种常见且侵袭性的淋巴瘤亚型,准确的生存预测对于治疗决策至关重要。本研究旨在开发一种强大的生存预测策略,以有效整合各种风险因素,包括临床风险因素以及不同治疗阶段正电子发射断层扫描/计算机断层扫描中的Deauville评分,采用基于深度学习的方法。我们对604例DLBCL患者的临床数据进行了多机构研究,并在来自独立机构的220例患者中对模型进行了验证。我们提出了一种使用Transformer架构和分类特征嵌入技术的生存预测模型,该技术可以处理高维和分类数据。与基于一致性指数(C-index)和平均绝对误差(MAE)的深度学习生存模型(如DeepSurv、CoxTime和CoxCC)进行比较表明,使用Transformer获得的分类特征改善了MAE和C-index。在测试集上,所提出的模型在生存时间估计的MAE方面比表现最佳的现有方法高出约185天。使用治疗期间获得的Deauville评分导致C-index提高0.02,MAE提高53.71天,突出了其预后重要性。我们的深度学习模型可以提高DLBCL患者的生存预测准确性和治疗个性化。