Suppr超能文献

使用机器学习检测髋关节和膝关节置换术后假体松动:系统评价和荟萃分析。

Detection of Prosthetic Loosening in Hip and Knee Arthroplasty Using Machine Learning: A Systematic Review and Meta-Analysis.

机构信息

Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

出版信息

Medicina (Kaunas). 2023 Apr 17;59(4):782. doi: 10.3390/medicina59040782.

Abstract

: prosthetic loosening after hip and knee arthroplasty is one of the most common causes of joint arthroplasty failure and revision surgery. Diagnosis of prosthetic loosening is a difficult problem and, in many cases, loosening is not clearly diagnosed until accurately confirmed during surgery. The purpose of this study is to conduct a systematic review and meta-analysis to demonstrate the analysis and performance of machine learning in diagnosing prosthetic loosening after total hip arthroplasty (THA) and total knee arthroplasty (TKA). : three comprehensive databases, including MEDLINE, EMBASE, and the Cochrane Library, were searched for studies that evaluated the detection accuracy of loosening around arthroplasty implants using machine learning. Data extraction, risk of bias assessment, and meta-analysis were performed. : five studies were included in the meta-analysis. All studies were retrospective studies. In total, data from 2013 patients with 3236 images were assessed; these data involved 2442 cases (75.5%) with THAs and 794 cases (24.5%) with TKAs. The most common and best-performing machine learning algorithm was DenseNet. In one study, a novel stacking approach using a random forest showed similar performance to DenseNet. The pooled sensitivity across studies was 0.92 (95% CI 0.84-0.97), the pooled specificity was 0.95 (95% CI 0.93-0.96), and the pooled diagnostic odds ratio was 194.09 (95% CI 61.60-611.57). The I2 statistics for sensitivity and specificity were 96% and 62%, respectively, showing that there was significant heterogeneity. The summary receiver operating characteristics curve indicated the sensitivity and specificity, as did the prediction regions, with an AUC of 0.9853. : the performance of machine learning using plain radiography showed promising results with good accuracy, sensitivity, and specificity in the detection of loosening around THAs and TKAs. Machine learning can be incorporated into prosthetic loosening screening programs.

摘要

: 髋关节和膝关节置换术后的假体松动是关节置换术失败和翻修手术的最常见原因之一。假体松动的诊断是一个难题,在许多情况下,直到手术中准确确认后才明确诊断松动。本研究旨在进行系统评价和荟萃分析,以展示机器学习在诊断全髋关节置换术(THA)和全膝关节置换术(TKA)后假体松动方面的分析和表现。: 我们检索了 MEDLINE、EMBASE 和 Cochrane 图书馆三个综合数据库,以评估使用机器学习检测假体周围松动的准确性的研究。进行了数据提取、偏倚风险评估和荟萃分析。: 荟萃分析纳入了 5 项研究。所有研究均为回顾性研究。共评估了 2013 名患者的 3236 张图像的数据;这些数据包括 2442 例(75.5%)THA 病例和 794 例(24.5%)TKA 病例。最常见和表现最好的机器学习算法是 DenseNet。在一项研究中,一种新的堆叠方法使用随机森林显示出与 DenseNet 相似的性能。研究中的汇总敏感性为 0.92(95%CI 0.84-0.97),汇总特异性为 0.95(95%CI 0.93-0.96),汇总诊断比值比为 194.09(95%CI 61.60-611.57)。敏感性和特异性的 I2 统计分别为 96%和 62%,表明存在显著的异质性。汇总受试者工作特征曲线表明了敏感性和特异性,预测区域也是如此,AUC 为 0.9853。: 使用普通 X 线摄影的机器学习性能显示出有希望的结果,在检测 THA 和 TKA 周围松动方面具有良好的准确性、敏感性和特异性。机器学习可以纳入假体松动筛查计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b59/10141023/54c57558ee83/medicina-59-00782-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验