Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States.
Biochemistry. 2023 May 16;62(10):1531-1543. doi: 10.1021/acs.biochem.3c00119. Epub 2023 Apr 28.
Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of C/H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen , LOX complexed with LA, as obtained through the C/H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the LOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the LOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the LOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of LOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.
脂氧合酶(LOX)酶产生重要的细胞信号转导介质,但通过 X 射线共晶学捕获和表征 LOX-底物复合物的尝试通常不成功,需要开发替代的结构方法。我们之前报道了通过 C/H 电子-核双共振(ENDOR)光谱和分子动力学(MD)计算的整合,可视化大豆脂氧合酶 SLO 与底物亚油酸(LA)复合物的结构。然而,这需要用结构忠实但无活性的 Mn 离子替代催化单核、非血红素铁作为自旋探针。与来自植物和动物的典型 Fe-LOX 不同,来自致病真菌的 LOX 含有活性单核 Mn 金属中心。在这里,我们报告了通过 C/H ENDOR 引导的 MD 方法获得的水稻稻瘟病菌天然、完全糖基化真菌 LOX 与 LA 复合物的基态活性位点结构。以这种方式获得的 LOX-LA 复合物中氢供体(C11)和受体(Mn 结合氧)之间的催化重要距离(供体-受体距离,DAD)为 3.4 ± 0.1 Å。LOX-LA DAD 与 SLO-LA 复合物的差异为 3.1 ± 0.1 Å,尽管仅相差 0.3 Å,但这在功能上是重要的,尽管 LOX 复合物具有 5.4 Å 的 Mn-C11 距离和“羧酸外”底物结合取向,而 SLO 复合物具有 4.9 Å 的 Mn-C11 距离和“羧酸内”底物取向。这些结果提供了 LOX 家族反应性差异的结构见解,为 LOX 抑制剂的开发提供了基础,并强调了 ENDOR 引导的 MD 方法描述 LOX-底物结构的稳健性。