Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States.
Department of Bioengineering and Therapeutic Science , University of California, San Francisco , San Francisco , California 94158 , United States.
J Am Chem Soc. 2019 Jan 30;141(4):1555-1567. doi: 10.1021/jacs.8b10992. Epub 2019 Jan 15.
Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature-independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen-deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein-solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.
大豆脂氧合酶(SLO)一直是理解酶促速率加速的分子起源的原型。双突变体(DM)L546A/L754A 被认为是一个显著的异常值,这是由于其初级动力学同位素效应的空前大小和近乎温度独立性、低催化效率和升高的活化焓。为了揭示这些特征的物理基础,我们在此应用了三种结构探针:氢氘交换质谱、室温 X 射线晶体学和 EPR 光谱学,对四个 SLO 变体(野生型(WT)酶、DM 以及两个亲本单突变体 L546A 和 L754A)进行了研究。发现 DM 融合了每个亲本的特征,位置 546 的扰动主要影响连接活性位点与蛋白质-溶剂界面的热激活运动,而位置 754 的突变破坏了辅因子铁附近的配体场和溶剂化。然而,DM 中扩展的活性位点导致更多的活性位点水分子及其相关氢键网络,并且 L546A 和 L754A 各自的特征不能单独解释 DM 的综合动力学性质。利用最近发表的 WT 和 DM 的 QM/MM 衍生的基态 SLO-底物复合物,以及本文提出的全面结构分析,我们提出 DM 的损伤是由于亚油酸底物的反应性碳原子相对于铁辅因子和蛋白质中催化相关的动态区域的重新定位所致。