Program in Systematic Biology, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden.
Sci Adv. 2023 Apr 28;9(17):eade4973. doi: 10.1126/sciadv.ade4973.
Much of the higher-order phylogeny of eukaryotes is well resolved, but the root remains elusive. We assembled a dataset of 183 eukaryotic proteins of archaeal ancestry to test this root. The resulting phylogeny identifies four lineages of eukaryotes currently classified as "Excavata" branching separately at the base of the tree. Thus, Parabasalia appear as the first major branch of eukaryotes followed sequentially by Fornicata, Preaxostyla, and Discoba. All four excavate branch points receive full statistical support from analyses with commonly used evolutionary models, a protein structure partition model that we introduce here, and various controls for deep phylogeny artifacts. The absence of aerobic mitochondria in Parabasalia, Fornicata, and Preaxostyla suggests that modern eukaryotes arose under anoxic conditions, probably much earlier than expected, and without the benefit of mitochondrial respiration.
真核生物的大部分高级系统发育已经得到很好的解决,但根仍然难以捉摸。我们组装了一个包含 183 种具有古菌祖先的真核蛋白的数据集,以检验这个根。结果表明,在树的底部,目前被归类为“挖掘真核生物”的四个真核生物谱系分别分枝。因此,原生动物作为真核生物的第一个主要分支出现,其次是滴虫纲、前鞭毛亚纲和双鞭毛纲。所有四个挖掘分支点都得到了常用进化模型、我们在这里引入的蛋白质结构分区模型以及各种控制深层系统发育伪影的分析的充分统计支持。原生动物、滴虫纲和前鞭毛亚纲中缺乏需氧线粒体表明,现代真核生物是在缺氧条件下产生的,可能比预期的要早得多,而且没有线粒体呼吸的好处。