文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于视网膜照片的深度学习检测明显的白内障。

Detecting visually significant cataract using retinal photograph-based deep learning.

机构信息

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.

Duke-NUS Medical School, Singapore, Singapore.

出版信息

Nat Aging. 2022 Mar;2(3):264-271. doi: 10.1038/s43587-022-00171-6. Epub 2022 Feb 21.


DOI:10.1038/s43587-022-00171-6
PMID:37118370
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10154193/
Abstract

Age-related cataracts are the leading cause of visual impairment among older adults. Many significant cases remain undiagnosed or neglected in communities, due to limited availability or accessibility to cataract screening. In the present study, we report the development and validation of a retinal photograph-based, deep-learning algorithm for automated detection of visually significant cataracts, using more than 25,000 images from population-based studies. In the internal test set, the area under the receiver operating characteristic curve (AUROC) was 96.6%. External testing performed across three studies showed AUROCs of 91.6-96.5%. In a separate test set of 186 eyes, we further compared the algorithm's performance with 4 ophthalmologists' evaluations. The algorithm performed comparably, if not being slightly more superior (sensitivity of 93.3% versus 51.7-96.6% by ophthalmologists and specificity of 99.0% versus 90.7-97.9% by ophthalmologists). Our findings show the potential of a retinal photograph-based screening tool for visually significant cataracts among older adults, providing more appropriate referrals to tertiary eye centers.

摘要

年龄相关性白内障是老年人视力损害的主要原因。由于白内障筛查的可用性或可及性有限,许多严重的病例在社区中未被诊断或忽视。在本研究中,我们报告了一种基于视网膜照片的深度学习算法的开发和验证,该算法用于自动检测基于人群的研究中超过 25000 张图像的具有临床意义的白内障。在内部测试集中,接收器操作特性曲线下的面积(AUROC)为 96.6%。在三项研究中的外部测试中,AUROC 为 91.6-96.5%。在另一个包含 186 只眼睛的测试集中,我们进一步将该算法的性能与 4 名眼科医生的评估进行了比较。该算法的表现相当,如果不是略有优势(敏感性为 93.3%,而眼科医生为 51.7-96.6%,特异性为 99.0%,而眼科医生为 90.7-97.9%)。我们的研究结果表明,基于视网膜照片的筛查工具在老年人中具有检测具有临床意义的白内障的潜力,可以为三级眼科中心提供更合适的转诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/64b8d26e6590/43587_2022_171_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/af6660c62cba/43587_2022_171_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/ccfb247ea885/43587_2022_171_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/64b8d26e6590/43587_2022_171_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/af6660c62cba/43587_2022_171_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/ccfb247ea885/43587_2022_171_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d9/10154193/64b8d26e6590/43587_2022_171_Fig3_HTML.jpg

相似文献

[1]
Detecting visually significant cataract using retinal photograph-based deep learning.

Nat Aging. 2022-3

[2]
Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study.

Lancet Digit Health. 2021-1

[3]
Deep learning for detecting visually impaired cataracts using fundus images.

Front Cell Dev Biol. 2023-7-28

[4]
Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.

Lancet Digit Health. 2021-5

[5]
Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.

Clin Exp Ophthalmol. 2019-7-25

[6]
A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs.

Ophthalmol Glaucoma. 2018

[7]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[8]
A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study.

Lancet Digit Health. 2022-11

[9]
Accuracy of an artificial intelligence-based mobile application for detecting cataracts: Results from a field study.

Indian J Ophthalmol. 2023-8

[10]
Evaluation of a Deep Learning System For Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.

J Glaucoma. 2019-12

引用本文的文献

[1]
Multi-Comparison of Different Ocular Imaging Modality-based Deep Learning Models for Visually Significant Cataract Detection.

Ophthalmol Sci. 2025-6-3

[2]
Deep learning-driven approach for cataract management: towards precise identification and predictive analytics.

Front Cell Dev Biol. 2025-5-30

[3]
A Domain-Specific Pretrained Model for Detecting Malignant and Premalignant Ocular Surface Tumors: A Multicenter Model Development and Evaluation Study.

Research (Wash D C). 2025-5-26

[4]
Tackling visual impairment: emerging avenues in ophthalmology.

Front Med (Lausanne). 2025-4-28

[5]
Deep Imbalanced Regression Model for Predicting Refractive Error from Retinal Photos.

Ophthalmol Sci. 2024-11-28

[6]
Artificial Intelligence Applications in Ophthalmology.

JMA J. 2025-1-15

[7]
Intelligent imaging technology applications in multidisciplinary hospitals.

Chin Med J (Engl). 2024-12-20

[8]
Applications of Artificial Intelligence in Cataract Surgery: A Review.

Clin Ophthalmol. 2024-10-17

[9]
Ocular image-based deep learning for predicting refractive error: A systematic review.

Adv Ophthalmol Pract Res. 2024-7-2

[10]
Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review.

Ophthalmol Ther. 2024-8

本文引用的文献

[1]
Effect of cataract type and severity on visual acuity and contrast sensitivity.

J Ophthalmic Vis Res. 2011-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索