Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
Duke-NUS Medical School, Singapore, Singapore.
Nat Aging. 2022 Mar;2(3):264-271. doi: 10.1038/s43587-022-00171-6. Epub 2022 Feb 21.
Age-related cataracts are the leading cause of visual impairment among older adults. Many significant cases remain undiagnosed or neglected in communities, due to limited availability or accessibility to cataract screening. In the present study, we report the development and validation of a retinal photograph-based, deep-learning algorithm for automated detection of visually significant cataracts, using more than 25,000 images from population-based studies. In the internal test set, the area under the receiver operating characteristic curve (AUROC) was 96.6%. External testing performed across three studies showed AUROCs of 91.6-96.5%. In a separate test set of 186 eyes, we further compared the algorithm's performance with 4 ophthalmologists' evaluations. The algorithm performed comparably, if not being slightly more superior (sensitivity of 93.3% versus 51.7-96.6% by ophthalmologists and specificity of 99.0% versus 90.7-97.9% by ophthalmologists). Our findings show the potential of a retinal photograph-based screening tool for visually significant cataracts among older adults, providing more appropriate referrals to tertiary eye centers.
年龄相关性白内障是老年人视力损害的主要原因。由于白内障筛查的可用性或可及性有限,许多严重的病例在社区中未被诊断或忽视。在本研究中,我们报告了一种基于视网膜照片的深度学习算法的开发和验证,该算法用于自动检测基于人群的研究中超过 25000 张图像的具有临床意义的白内障。在内部测试集中,接收器操作特性曲线下的面积(AUROC)为 96.6%。在三项研究中的外部测试中,AUROC 为 91.6-96.5%。在另一个包含 186 只眼睛的测试集中,我们进一步将该算法的性能与 4 名眼科医生的评估进行了比较。该算法的表现相当,如果不是略有优势(敏感性为 93.3%,而眼科医生为 51.7-96.6%,特异性为 99.0%,而眼科医生为 90.7-97.9%)。我们的研究结果表明,基于视网膜照片的筛查工具在老年人中具有检测具有临床意义的白内障的潜力,可以为三级眼科中心提供更合适的转诊。
Front Cell Dev Biol. 2023-7-28
Ophthalmol Glaucoma. 2018
Graefes Arch Clin Exp Ophthalmol. 2019-3
Front Cell Dev Biol. 2025-5-30
Front Med (Lausanne). 2025-4-28
Ophthalmol Sci. 2024-11-28
JMA J. 2025-1-15
Chin Med J (Engl). 2024-12-20
Clin Ophthalmol. 2024-10-17
Adv Ophthalmol Pract Res. 2024-7-2
J Ophthalmic Vis Res. 2011-1