IBM Research, Haifa, Israel.
The Hebrew University of Jerusalem, Jerusalem, Israel.
AMIA Annu Symp Proc. 2023 Apr 29;2022:385-394. eCollection 2022.
Breast cancer (BC) risk models based on electronic health records (EHR) can assist physicians in estimating the probability of an individual with certain risk factors to develop BC in the future. In this retrospective study, we used clinical data combined with machine learning tools to assess the utility of a personalized BC risk model on 13,786 Israeli and 1,695 American women who underwent screening mammography in the years 2012-2018 and 2008-2018, respectively. Clinical features were extracted from EHR, personal questionnaires, and past radiologists' reports. Using a set of 1,547 features, the predictive ability for BC within 12 months was measured in both datasets and in sub-cohorts of interest. Our results highlight the improved performance of our model over previous established BC risk models, their ultimate potential for risk-based screening policies on first time patients and novel clinically relevant risk factors that can compensate for the absence of imaging history information.
基于电子健康记录 (EHR) 的乳腺癌 (BC) 风险模型可以帮助医生估计具有某些风险因素的个体在未来发生 BC 的概率。在这项回顾性研究中,我们使用临床数据和机器学习工具来评估个性化 BC 风险模型在分别于 2012-2018 年和 2008-2018 年接受筛查乳房 X 光检查的 13786 名以色列女性和 1695 名美国女性中的效用。临床特征从 EHR、个人问卷和过去放射科医生的报告中提取。使用一组 1547 个特征,在两个数据集以及感兴趣的亚队列中测量了 12 个月内发生 BC 的预测能力。我们的研究结果强调了我们的模型相对于先前建立的 BC 风险模型的改进性能,它们最终有可能为首次就诊患者制定基于风险的筛查政策,并提供可以弥补影像学史信息缺失的新的临床相关风险因素。