Suppr超能文献

分布式数据网络中的表型分析:为合适的患者选择合适的编码。

Phenotyping in distributed data networks: selecting the right codes for the right patients.

机构信息

Columbia University, New York, NY, USA.

Janssen Research and Development, Titusville, NJ.

出版信息

AMIA Annu Symp Proc. 2023 Apr 29;2022:826-835. eCollection 2022.

Abstract

Observational data can be used to conduct drug surveillance and effectiveness studies, investigate treatment pathways, and predict patient outcomes. Such studies require developing executable algorithms to find patients of interest or phenotype algorithms. Creating reliable and comprehensive phenotype algorithms in data networks is especially hard as differences in patient representation and data heterogeneity must be considered. In this paper, we discuss a process for creating a comprehensive concept set and a recommender system we built to facilitate it. PHenotype Observed Entity Baseline Endorsements (PHOEBE) uses the data on code utilization across 22 electronic health record and claims datasets mapped to the Observational Health Data Sciences and Informatics (OHDSI) Common Data Model from the 6 countries to recommend semantically and lexically similar codes. Coupled with Cohort Diagnostics, it is now used in major network OHDSI studies. When used to create patient cohorts, PHOEBE identifies more patients and captures them earlier in the course of the disease.

摘要

观察性数据可用于开展药物监测和效果研究、调查治疗途径以及预测患者预后。此类研究需要开发可执行的算法来找到感兴趣的患者或表型算法。在数据网络中创建可靠且全面的表型算法特别困难,因为必须考虑患者表示和数据异质性的差异。本文讨论了创建全面概念集的过程以及我们构建的推荐系统,以方便使用。PHenotype Observed Entity Baseline Endorsements (PHOEBE) 使用了 6 个国家的 22 个电子健康记录和索赔数据集的代码使用数据,这些数据映射到观察性健康数据科学和信息学 (OHDSI) 通用数据模型,以推荐语义和词汇相似的代码。与 Cohort Diagnostics 结合使用,它现在用于主要网络 OHDSI 研究中。当用于创建患者队列时,PHOEBE 可以识别更多的患者,并在疾病过程中更早地捕获他们。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验