Suppr超能文献

值集与值集存储库中的冗余问题。

Value sets and the problem of redundancy in value set repositories.

作者信息

Gold Sigfried, Lehmann Harold P, Schilling Lisa M, Lutters Wayne G

机构信息

College of Information Studies, University of Maryland, College Park, MD, United States of America.

Johns Hopkins University, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2024 Dec 9;19(12):e0312289. doi: 10.1371/journal.pone.0312289. eCollection 2024.

Abstract

OBJECTIVE

Crafting high-quality value sets is time-consuming and requires a range of clinical, terminological, and informatics expertise. Despite widespread agreement on the importance of reusing value sets, value set repositories suffer from clutter and redundancy, greatly complicating efforts at reuse. When users encounter multiple value sets with the same name or ostensibly representing the same clinical condition, it can be difficult to choose amongst them or determine if any differences among them are due to error or intentional decision.

METHODS

This paper offers a view of value set development and reuse based on a field study of researchers and informaticists. The results emerge from an analysis of relevant literature, reflective practice, and the field research data.

RESULTS

Qualitative analysis of our study data, the relevant literature, and our own professional experience led us to three dichotomous concepts that frame an understanding of diverse practices and perspectives surrounding value set development: Permissible values versus analytic value sets;Prescriptive versus descriptive approaches to controlled medical vocabulary use; andSemantic and empirical types of value set development and evaluation practices and the data they rely on.This three-fold framework opens up the redundancy problem, explaining why multiple value sets may or may not be needed and advancing academic understanding of value set development.

CONCLUSION

In order for value set repositories to become more rather than less useful over time, software must channel user efforts into either improving existing value sets or making new ones only when absolutely necessary. This would require major, innovative changes to value set repository platforms. We believe the most direct path to giving value set developers the ability to leverage prior work is by encouraging them to compare existing value sets using advanced interfaces like VS-Hub, and by collecting and using metadata about code inclusion and exclusion decisions during the authoring process.

摘要

目的

构建高质量的值集既耗时又需要一系列临床、术语和信息学方面的专业知识。尽管对于重用值集的重要性已达成广泛共识,但值集存储库却存在杂乱和冗余的问题,这极大地增加了重用的难度。当用户遇到多个同名或表面上代表相同临床状况的值集时,很难在它们之间进行选择,也难以确定它们之间的任何差异是由于错误还是有意决定造成的。

方法

本文基于对研究人员和信息学家的实地研究,提出了一种关于值集开发和重用的观点。研究结果来自对相关文献、反思性实践和实地研究数据的分析。

结果

对我们的研究数据、相关文献以及我们自己的专业经验进行定性分析后,我们得出了三个二分概念,这些概念构成了对围绕值集开发的各种实践和观点的理解:允许值与分析值集;在控制医学词汇使用方面的规定性方法与描述性方法;以及值集开发和评估实践及其所依赖数据的语义和实证类型。这个三重框架揭示了冗余问题,解释了为什么可能需要或不需要多个值集,并促进了对值集开发的学术理解。

结论

为了使值集存储库随着时间的推移变得更有用而不是更无用,软件必须引导用户努力改进现有值集,或者仅在绝对必要时创建新值集。这将需要对值集存储库平台进行重大的创新性变革。我们认为,赋予值集开发者利用先前工作能力的最直接途径是鼓励他们使用VS-Hub等高级接口比较现有值集,并在创作过程中收集和使用有关代码包含和排除决策的元数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/684a/11627404/89aa46924e6c/pone.0312289.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验