Department of Medicine, University of California San Diego, La Jolla, CA 92103, United States.
Department of Emergency Medicine, University of California San Diego, La Jolla, CA 92103, United States.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2679-2688. doi: 10.1093/jamia/ocae242.
Unplanned readmissions following a hospitalization remain common despite significant efforts to curtail these. Wearable devices may offer help identify patients at high risk for an unplanned readmission.
We conducted a multi-center retrospective cohort study using data from the All of Us data repository. We included subjects with wearable data and developed a baseline Feedforward Neural Network (FNN) model and a Long Short-Term Memory (LSTM) time-series deep learning model to predict daily, unplanned rehospitalizations up to 90 days from discharge. In addition to demographic and laboratory data from subjects, post-discharge data input features include wearable data and multiscale entropy features based on intraday wearable time series. The most significant features in the LSTM model were determined by permutation feature importance testing.
In sum, 612 patients met inclusion criteria. The complete LSTM model had a higher area under the receiver operating characteristic curve than the FNN model (0.83 vs 0.795). The 5 most important input features included variables from multiscale entropy (steps) and number of active steps per day.
Data available from wearable devices can improve ability to predict readmissions. Prior work has focused on predictors available up to discharge or on additional data abstracted from wearable devices. Our results from 35 institutions highlight how multiscale entropy can improve readmission prediction and may impact future work in this domain.
Wearable data and multiscale entropy can improve prediction of a deep-learning model to predict unplanned 90-day readmissions. Prospective studies are needed to validate these findings.
尽管已经做出了很大的努力来控制住院后的非计划性再入院,但这种情况仍然很常见。可穿戴设备可能有助于识别高风险的非计划性再入院患者。
我们使用来自 All of Us 数据存储库的数据进行了一项多中心回顾性队列研究。我们纳入了有可穿戴设备数据的患者,并开发了一个基线前馈神经网络(FNN)模型和一个长短期记忆(LSTM)时间序列深度学习模型,以预测出院后 90 天内的每日非计划性再入院。除了患者的人口统计学和实验室数据外,出院后数据输入特征包括可穿戴设备数据和基于日内可穿戴时间序列的多尺度熵特征。LSTM 模型中最重要的特征通过置换特征重要性测试确定。
共有 612 名患者符合纳入标准。完整的 LSTM 模型的接收者操作特征曲线下面积(AUC)高于 FNN 模型(0.83 对 0.795)。最重要的 5 个输入特征包括多尺度熵(步数)和每日活跃步数的变量。
可穿戴设备提供的数据可以提高预测再入院的能力。之前的工作重点是出院前可用的预测因子,或者是从可穿戴设备中提取的其他数据。我们来自 35 家机构的结果强调了多尺度熵如何提高再入院预测的准确性,并可能对该领域的未来工作产生影响。
可穿戴设备数据和多尺度熵可以提高深度学习模型预测非计划性 90 天再入院的能力。需要前瞻性研究来验证这些发现。