Suppr超能文献

制定伦理与公平原则、术语及参与工具,以促进人工智能和机器学习领域的健康公平及研究人员多样性:改良德尔菲法

Developing Ethics and Equity Principles, Terms, and Engagement Tools to Advance Health Equity and Researcher Diversity in AI and Machine Learning: Modified Delphi Approach.

作者信息

Hendricks-Sturrup Rachele, Simmons Malaika, Anders Shilo, Aneni Kammarauche, Wright Clayton Ellen, Coco Joseph, Collins Benjamin, Heitman Elizabeth, Hussain Sajid, Joshi Karuna, Lemieux Josh, Lovett Novak Laurie, Rubin Daniel J, Shanker Anil, Washington Talitha, Waters Gabriella, Webb Harris Joyce, Yin Rui, Wagner Teresa, Yin Zhijun, Malin Bradley

机构信息

National Alliance Against Disparities in Patient Health, Woodbridge, VA, United States.

Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

JMIR AI. 2023 Dec 6;2:e52888. doi: 10.2196/52888.

Abstract

BACKGROUND

Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid, despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities. From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more diverse AI and ML design and development workforce engaged in health research.

OBJECTIVE

AI and ML has the potential to account for and assess a variety of factors that contribute to health and disease and to improve prevention, diagnosis, and therapy. Here, we describe recent activities within the Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity Workgroup (EEWG) that led to the development of deliverables that will help put ethics and fairness at the forefront of AI and ML applications to build equity in biomedical research, education, and health care.

METHODS

The AIM-AHEAD EEWG was created in 2021 with 3 cochairs and 51 members in year 1 and 2 cochairs and ~40 members in year 2. Members in both years included AIM-AHEAD principal investigators, coinvestigators, leadership fellows, and research fellows. The EEWG used a modified Delphi approach using polling, ranking, and other exercises to facilitate discussions around tangible steps, key terms, and definitions needed to ensure that ethics and fairness are at the forefront of AI and ML applications to build equity in biomedical research, education, and health care.

RESULTS

The EEWG developed a set of ethics and equity principles, a glossary, and an interview guide. The ethics and equity principles comprise 5 core principles, each with subparts, which articulate best practices for working with stakeholders from historically and presently underrepresented communities. The glossary contains 12 terms and definitions, with particular emphasis on optimal development, refinement, and implementation of AI and ML in health equity research. To accompany the glossary, the EEWG developed a concept relationship diagram that describes the logical flow of and relationship between the definitional concepts. Lastly, the interview guide provides questions that can be used or adapted to garner stakeholder and community perspectives on the principles and glossary.

CONCLUSIONS

Ongoing engagement is needed around our principles and glossary to identify and predict potential limitations in their uses in AI and ML research settings, especially for institutions with limited resources. This requires time, careful consideration, and honest discussions around what classifies an engagement incentive as meaningful to support and sustain their full engagement. By slowing down to meet historically and presently underresourced institutions and communities where they are and where they are capable of engaging and competing, there is higher potential to achieve needed diversity, ethics, and equity in AI and ML implementation in health research.

摘要

背景

尽管人工智能(AI)和机器学习(ML)技术在当前作为一种解决所有社会人道主义问题和复杂性的实践与学科存在重大局限性,但其设计和开发仍在持续快速发展。鉴于这些局限性,加强服务不足社区的AI和ML素养,并建立一支更加多元化的从事健康研究的AI和ML设计与开发队伍变得势在必行。

目的

AI和ML有潜力考虑和评估导致健康和疾病的各种因素,并改善预防、诊断和治疗。在此,我们描述了人工智能/机器学习促进健康公平与研究者多样性联盟(AIM - AHEAD)伦理与公平工作组(EEWG)近期开展的活动,这些活动促成了一系列成果的产生,这些成果将有助于把伦理和公平置于AI和ML应用的前沿,以在生物医学研究、教育和医疗保健领域建立公平。

方法

AIM - AHEAD EEWG于2021年成立,第一年有3名联合主席和51名成员,第二年有2名联合主席和约40名成员。这两年的成员包括AIM - AHEAD的主要研究者、共同研究者、领导研究员和研究助理。EEWG采用了一种经过改进的德尔菲法,通过投票、排序和其他活动,促进围绕确保伦理和公平处于AI和ML应用前沿所需的具体步骤、关键术语和定义展开讨论,以在生物医学研究、教育和医疗保健领域建立公平。

结果

EEWG制定了一套伦理与公平原则、一份术语表和一份访谈指南。伦理与公平原则包括5项核心原则,每项原则都有子部分,阐述了与历史上和当前代表性不足社区的利益相关者合作的最佳实践。术语表包含12个术语和定义,特别强调在健康公平研究中AI和ML的优化开发、完善和实施。为配合术语表,EEWG绘制了一幅概念关系图,描述了定义概念之间的逻辑流程和关系。最后,访谈指南提供了一些问题,可用于或改编后获取利益相关者和社区对这些原则和术语表的看法。

结论

需要围绕我们的原则和术语表持续进行参与,以识别和预测它们在AI和ML研究环境中使用时的潜在局限性,特别是对于资源有限的机构。这需要时间、仔细考虑以及围绕什么将参与激励视为有意义以支持和维持其充分参与进行坦诚的讨论。通过放慢脚步,去接触历史上和当前资源不足的机构和社区,了解它们所处的位置以及它们能够参与和竞争的领域,在健康研究中实现AI和ML实施所需的多样性、伦理和公平的潜力就会更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11041493/bbfcc18dabe1/ai_v2i1e52888_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验