Suppr超能文献

用于计算脑移位和解决脑电描记术正向问题的图像数据和计算网格。

Image data and computational grids for computing brain shift and solving the electrocorticography forward problem.

作者信息

Zwick Benjamin F, Safdar Saima, Bourantas George C, Joldes Grand R, Hyde Damon E, Warfield Simon K, Wittek Adam, Miller Karol

机构信息

Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia.

Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA.

出版信息

Data Brief. 2023 Apr 7;48:109122. doi: 10.1016/j.dib.2023.109122. eCollection 2023 Jun.

Abstract

This article describes the dataset applied in the research reported in NeuroImage article "Patient-specific solution of the electrocorticography forward problem in deforming brain" [1] that is available for download from the Zenodo data repository (https://zenodo.org/record/7687631) [2]. Preoperative structural and diffusion-weighted magnetic resonance (MR) and postoperative computed tomography (CT) images of a 12-year-old female epilepsy patient under evaluation for surgical intervention were obtained retrospectively from Boston Children's Hospital. We used these images to conduct the analysis at The University of Western Australia's Intelligent Systems for Medicine Laboratory using SlicerCBM [3], our open-source software extension for the 3D Slicer medical imaging platform. As part of the analysis, we processed the images to extract the patient-specific brain geometry; created computational grids, including a tetrahedral grid for the meshless solution of the biomechanical model and a regular hexahedral grid for the finite element solution of the electrocorticography forward problem; predicted the postoperative MRI and DTI that correspond to the brain configuration deformed by the placement of subdural electrodes using biomechanics-based image warping; and solved the patient-specific electrocorticography forward problem to compute the electric potential distribution within the patient's head using the original preoperative and predicted postoperative image data. The well-established and open-source file formats used in this dataset, including Nearly Raw Raster Data (NRRD) files for images, STL files for surface geometry, and Visualization Toolkit (VTK) files for computational grids, allow other research groups to easily reuse the data presented herein to solve the electrocorticography forward problem accounting for the brain shift caused by implantation of subdural grid electrodes.

摘要

本文描述了应用于《神经影像学》文章《变形脑电皮层电图正向问题的患者特异性解决方案》[1]中所报道研究的数据集,该数据集可从Zenodo数据存储库(https://zenodo.org/record/7687631)[2]下载。对一名接受手术干预评估的12岁女性癫痫患者的术前结构和扩散加权磁共振(MR)图像以及术后计算机断层扫描(CT)图像进行了回顾性收集,这些图像来自波士顿儿童医院。我们使用这些图像,在西澳大利亚大学的医学智能系统实验室,利用SlicerCBM[3](我们为3D Slicer医学成像平台开发的开源软件扩展)进行分析。作为分析的一部分,我们对图像进行处理以提取患者特异性脑几何结构;创建计算网格,包括用于生物力学模型无网格求解的四面体网格和用于脑电皮层电图正向问题有限元求解的规则六面体网格;使用基于生物力学的图像变形预测与因放置硬膜下电极而变形的脑配置相对应的术后MRI和DTI;并使用原始术前和预测术后图像数据求解患者特异性脑电皮层电图正向问题,以计算患者头部内的电势分布。此数据集中使用的成熟且开源的文件格式,包括用于图像的近原始光栅数据(NRRD)文件、用于表面几何结构的STL文件以及用于计算网格的可视化工具包(VTK)文件,使其他研究团队能够轻松重用本文中呈现的数据,以解决考虑硬膜下网格电极植入引起的脑移位的脑电皮层电图正向问题。

相似文献

本文引用的文献

1
SlicerCBM: automatic framework for biomechanical analysis of the brain.SlicerCBM:用于大脑生物力学分析的自动框架。
Int J Comput Assist Radiol Surg. 2023 Oct;18(10):1925-1940. doi: 10.1007/s11548-023-02881-7. Epub 2023 Apr 1.
5
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
7
Automatic segmentation of newborn brain MRI.新生儿脑部磁共振成像的自动分割
Neuroimage. 2009 Aug 15;47(2):564-72. doi: 10.1016/j.neuroimage.2009.04.068. Epub 2009 May 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验