Suppr超能文献

FEMfuns:一个包含电阻、电容或弥散性组织和电极的容积传导建模管道。

FEMfuns: A Volume Conduction Modeling Pipeline that Includes Resistive, Capacitive or Dispersive Tissue and Electrodes.

机构信息

Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands.

Radboud University Nijmegen Medical Centre, Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

出版信息

Neuroinformatics. 2020 Oct;18(4):569-580. doi: 10.1007/s12021-020-09458-8.

Abstract

Applications such as brain computer interfaces require recordings of relevant neuronal population activity with high precision, for example, with electrocorticography (ECoG) grids. In order to achieve this, both the placement of the electrode grid on the cortex and the electrode properties, such as the electrode size and material, need to be optimized. For this purpose, it is essential to have a reliable tool that is able to simulate the extracellular potential, i.e., to solve the so-called ECoG forward problem, and to incorporate the properties of the electrodes explicitly in the model. In this study, this need is addressed by introducing the first open-source pipeline, FEMfuns (finite element method for useful neuroscience simulations), that allows neuroscientists to solve the forward problem in a variety of different geometrical domains, including different types of source models and electrode properties, such as resistive and capacitive materials. FEMfuns is based on the finite element method (FEM) implemented in FEniCS and includes the geometry tessellation, several electrode-electrolyte implementations and adaptive refinement options. The Python code of the pipeline is available under the GNU General Public License version 3 at https://github.com/meronvermaas/FEMfuns . We tested our pipeline with several geometries and source configurations such as a dipolar source in a multi-layer sphere model and a five-compartment realistically-shaped head model. Furthermore, we describe the main scripts in the pipeline, illustrating its flexible and versatile use. Provided with a sufficiently fine tessellation, the numerical solution of the forward problem approximates the analytical solution. Furthermore, we show dispersive material and interface effects in line with previous literature. Our results indicate substantial capacitive and dispersive effects due to the electrode-electrolyte interface when using stimulating electrodes. The results demonstrate that the pipeline presented in this paper is an accurate and flexible tool to simulate signals generated on electrode grids by the spatiotemporal electrical activity patterns produced by sources and thereby allows the user to optimize grids for brain computer interfaces including exploration of alternative electrode materials/properties.

摘要

应用程序,如脑机接口,需要高精度地记录相关神经元群体的活动,例如,使用脑皮层电图 (ECoG) 网格。为了实现这一点,需要优化电极网格在皮层上的放置以及电极的特性,例如电极的大小和材料。为此,必须有一种可靠的工具,能够模拟细胞外电势,即解决所谓的 ECoG 正问题,并在模型中明确纳入电极的特性。在这项研究中,通过引入第一个开源管道 FEMfuns(用于有用的神经科学模拟的有限元方法)来满足这一需求,该管道允许神经科学家在各种不同的几何区域中解决正问题,包括不同类型的源模型和电极特性,如电阻和电容材料。FEMfuns 基于在 FEniCS 中实现的有限元方法 (FEM),并包括几何剖分、几种电极-电解质实现和自适应细化选项。该管道的 Python 代码可在 https://github.com/meronvermaas/FEMfuns 下根据 GNU 通用公共许可证版本 3 获得。我们使用几种几何形状和源配置(例如,多层层球模型中的偶极子源和具有真实形状的五室头模型)对我们的管道进行了测试。此外,我们描述了管道中的主要脚本,说明了其灵活多变的用途。提供足够精细的剖分后,正问题的数值解近似于解析解。此外,我们还展示了与先前文献一致的弥散材料和界面效应。我们的结果表明,在使用刺激电极时,由于电极-电解质界面,会产生相当大的电容和弥散效应。结果表明,本文提出的管道是一种准确而灵活的工具,可以模拟由源产生的时空电活动模式在电极网格上产生的信号,从而允许用户优化脑机接口的网格,包括探索替代的电极材料/特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef40/7498500/d1083130d2c3/12021_2020_9458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验