Suppr超能文献

蒙特卡罗模拟在纳米颗粒剂量增强和细胞存活曲线生物建模中的重现性研究。

Reproducibility study of Monte Carlo simulations for nanoparticle dose enhancement and biological modeling of cell survival curves.

机构信息

Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States of America.

Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, United States of America.

出版信息

Biomed Phys Eng Express. 2023 May 10;9(4). doi: 10.1088/2057-1976/acd1f1.

Abstract

Nanoparticle-derived radiosensitization has been investigated by several groups using Monte Carlo simulations and biological modeling. In this work we replicated the physical simulation and biological modeling of previously published research for 50 nm gold nanoparticles irradiated with monoenergetic photons, various 250 kVp photon spectra, and spread-out Bragg peak (SOBP) protons. Monte Carlo simulations were performed using TOPAS and used condensed history Penelope low energy physics models for macroscopic dose deposition and interaction with the nanoparticle; simulation of the microscopic dose deposition from nanoparticle secondaries was performed using Geant4-DNA track structure physics. Biological modeling of survival fractions was performed using a local effect model-type approach for MDA-MB-231 breast cancer cells. Physical simulation results agreed extraordinarily well at all distances (1 nm to 10m from nanoparticle) for monoenergetic photons and SOBP protons in terms of dose per interaction, dose kernel ratio (often labeled dose enhancement factor), and secondary electron spectra. For 250 kVp photons the influence of the gold K-edge was investigated and found to appreciably affect the results. Calculated survival fractions similarly agreed well within one order of magnitude at macroscopic doses (i.e. without nanoparticle contribution) from 1 Gy to 10 Gy. Several 250 kVp spectra were tested to find one yielding closest agreement with previous results. This highlights the importance of a detailed description of the low energy (< 150 keV) component of photon spectra used for, as well as, andstudies to ensure reproducibility of the experiments by the scientific community. Both, Monte Carlo simulations of physical interactions of the nanoparticle with photons and protons, as well as the biological modelling of cell survival curves agreed extraordinarily well with previously published data. Further investigation of the stochastic nature of nanoparticle radiosenstiziation is ongoing.

摘要

纳米颗粒衍生的放射增敏作用已被多个小组使用蒙特卡罗模拟和生物建模进行了研究。在这项工作中,我们复制了之前发表的研究的物理模拟和生物建模,用于 50nm 金纳米颗粒被单能光子、各种 250kVp 光子谱和扩展布拉格峰(SOBP)质子照射。蒙特卡罗模拟使用 TOPAS 进行,并使用浓缩历史 Penelope 低能物理模型进行宏观剂量沉积和与纳米颗粒的相互作用;使用 Geant4-DNA 径迹结构物理模型模拟纳米颗粒次级产生的微观剂量沉积。使用 MDA-MB-231 乳腺癌细胞的局部效应模型型方法对生存分数进行生物建模。在所有距离(从纳米颗粒 1nm 到 10m)处,单能光子和 SOBP 质子的物理模拟结果在剂量/相互作用、剂量核比(通常称为剂量增强因子)和次级电子谱方面非常吻合。对于 250kVp 光子,研究了金 K 边的影响,发现其对结果有明显影响。在宏观剂量(即没有纳米颗粒贡献)范围内,计算的生存分数在 1Gy 到 10Gy 之间也非常吻合,相差一个数量级。测试了几种 250kVp 光谱,以找到与以前结果最接近的一个。这突出了详细描述光子光谱的低能(<150keV)分量的重要性,以及确保实验可重复性的研究,这对科学界至关重要。纳米颗粒与光子和质子的物理相互作用的蒙特卡罗模拟以及细胞生存曲线的生物建模都与以前发表的数据非常吻合。对纳米颗粒放射增敏作用的随机性的进一步研究正在进行中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验