Suppr超能文献

评估促进身体活动的移动健康干预措施的实用性质:系统评价和荟萃分析。

Assessing the Pragmatic Nature of Mobile Health Interventions Promoting Physical Activity: Systematic Review and Meta-analysis.

机构信息

College of Health Solutions, Arizona State University, Phoenix, AZ, United States.

Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

JMIR Mhealth Uhealth. 2023 May 4;11:e43162. doi: 10.2196/43162.

Abstract

BACKGROUND

Mobile health (mHealth) apps can promote physical activity; however, the pragmatic nature (ie, how well research translates into real-world settings) of these studies is unknown. The impact of study design choices, for example, intervention duration, on intervention effect sizes is also understudied.

OBJECTIVE

This review and meta-analysis aims to describe the pragmatic nature of recent mHealth interventions for promoting physical activity and examine the associations between study effect size and pragmatic study design choices.

METHODS

The PubMed, Scopus, Web of Science, and PsycINFO databases were searched until April 2020. Studies were eligible if they incorporated apps as the primary intervention, were conducted in health promotion or preventive care settings, included a device-based physical activity outcome, and used randomized study designs. Studies were assessed using the Reach, Effectiveness, Adoption, Implementation, Maintenance (RE-AIM) and Pragmatic-Explanatory Continuum Indicator Summary-2 (PRECIS-2) frameworks. Study effect sizes were summarized using random effect models, and meta-regression was used to examine treatment effect heterogeneity by study characteristics.

RESULTS

Overall, 3555 participants were included across 22 interventions, with sample sizes ranging from 27 to 833 (mean 161.6, SD 193.9, median 93) participants. The study populations' mean age ranged from 10.6 to 61.5 (mean 39.6, SD 6.5) years, and the proportion of males included across all studies was 42.8% (1521/3555). Additionally, intervention lengths varied from 2 weeks to 6 months (mean 60.9, SD 34.9 days). The primary app- or device-based physical activity outcome differed among interventions: most interventions (17/22, 77%) used activity monitors or fitness trackers, whereas the rest (5/22, 23%) used app-based accelerometry measures. Data reporting across the RE-AIM framework was low (5.64/31, 18%) and varied within specific dimensions (Reach=44%; Effectiveness=52%; Adoption=3%; Implementation=10%; Maintenance=12.4%). PRECIS-2 results indicated that most study designs (14/22, 63%) were equally explanatory and pragmatic, with an overall PRECIS-2 score across all interventions of 2.93/5 (SD 0.54). The most pragmatic dimension was flexibility (adherence), with an average score of 3.73 (SD 0.92), whereas follow-up, organization, and flexibility (delivery) appeared more explanatory with means of 2.18 (SD 0.75), 2.36 (SD 1.07), and 2.41 (SD 0.72), respectively. An overall positive treatment effect was observed (Cohen d=0.29, 95% CI 0.13-0.46). Meta-regression analyses revealed that more pragmatic studies (-0.81, 95% CI -1.36 to -0.25) were associated with smaller increases in physical activity. Treatment effect sizes were homogenous across study duration, participants' age and gender, and RE-AIM scores.

CONCLUSIONS

App-based mHealth physical activity studies continue to underreport several key study characteristics and have limited pragmatic use and generalizability. In addition, more pragmatic interventions observe smaller treatment effects, whereas study duration appears to be unrelated to the effect size. Future app-based studies should more comprehensively report real-world applicability, and more pragmatic approaches are needed for maximal population health impacts.

TRIAL REGISTRATION

PROSPERO CRD42020169102; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=169102.

摘要

背景

移动健康(mHealth)应用程序可以促进身体活动;然而,这些研究的实际性质(即研究如何转化为实际环境)尚不清楚。研究设计选择(例如,干预持续时间)对干预效果大小的影响也研究不足。

目的

本综述和荟萃分析旨在描述最近用于促进身体活动的 mHealth 干预措施的实际性质,并研究研究效果大小与实际研究设计选择之间的关系。

方法

在 2020 年 4 月之前,我们在 PubMed、Scopus、Web of Science 和 PsycINFO 数据库中进行了搜索。如果研究将应用程序作为主要干预手段,在健康促进或预防保健环境中进行,包括基于设备的身体活动结果,并使用随机研究设计,则研究合格。研究使用可达性、有效性、采用、实施、维持(RE-AIM)和实用-解释连续体指标总结-2(PRECIS-2)框架进行评估。使用随机效应模型总结研究效果大小,并使用元回归检查研究特征对治疗效果异质性的影响。

结果

总体而言,共有 22 项干预措施的 3555 名参与者纳入研究,样本量从 27 人到 833 人不等(平均 161.6,SD 193.9,中位数 93)。研究人群的平均年龄范围从 10.6 岁到 61.5 岁(平均 39.6,SD 6.5 岁),所有研究中男性的比例为 42.8%(1521/3555)。此外,干预时长从 2 周到 6 个月不等(平均 60.9,SD 34.9 天)。干预措施的主要基于应用程序或设备的身体活动结果各不相同:大多数干预措施(17/22,77%)使用活动监测器或健身追踪器,而其余(5/22,23%)使用基于应用程序的加速度计测量。RE-AIM 框架中的数据报告率较低(5.64/31,18%),并且在特定维度内存在差异(可达性=44%;有效性=52%;采用=3%;实施=10%;维持=12.4%)。PRECIS-2 结果表明,大多数研究设计(14/22,63%)同样具有解释性和实用性,所有干预措施的总体 PRECIS-2 评分均为 2.93/5(SD 0.54)。最实用的维度是灵活性(依从性),平均得分为 3.73(SD 0.92),而随访、组织和灵活性(交付)则更具解释性,平均得分分别为 2.18(SD 0.75)、2.36(SD 1.07)和 2.41(SD 0.72)。观察到总体积极的治疗效果(Cohen d=0.29,95% CI 0.13-0.46)。元回归分析表明,更实用的研究(-0.81,95% CI -1.36 至 -0.25)与身体活动的增加幅度较小有关。治疗效果大小在研究持续时间、参与者年龄和性别以及 RE-AIM 评分方面具有同质性。

结论

基于应用程序的 mHealth 身体活动研究继续报告关键研究特征不足,实际应用和推广性有限。此外,更实用的干预措施观察到较小的治疗效果,而研究持续时间似乎与效果大小无关。未来基于应用程序的研究应更全面地报告实际适用性,需要更实用的方法以实现最大的人群健康影响。

试验注册

PROSPERO CRD42020169102;https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=169102。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691c/10196895/a612e75bfd71/mhealth_v11i1e43162_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验