Suppr超能文献

纳米壳聚糖-纳米淀粉-真菌合成氧化铜纳米复合材料抗多药耐药念珠菌的抗真菌活性。

Anticandidal activity of nanocomposite based on nanochitosan, nanostarch and mycosynthesized copper oxide nanoparticles against multidrug-resistant Candida.

机构信息

Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.

Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt.

出版信息

Int J Biol Macromol. 2023 Jul 1;242(Pt 1):124709. doi: 10.1016/j.ijbiomac.2023.124709. Epub 2023 May 2.

Abstract

Recently, antimicrobial resistance has increased globally particularly Candida infections. Most of antifungal drugs used for treating candidiasis became resistant to most of Candida species. In the current study, a nanocomposite based on mycosynthesized copper oxide nanoparticles (CuONPs), nanostarch, nanochitosan was prepared. Results illustrated that twenty-four Candida isolates were isolated from clinical samples. Furthermore, three Candida strains were selected as the most resistant among others toward commercial antifungal drugs; these selected strains were identified genetically as C. glabrata MTMA 19, C. glabrata MTMA 21 and C. tropicalis MTMA 24. Characterization of the prepared nanocomposite was carried out using physiochemical analysis included Ultraviolet-visible spectroscopy (Uv-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX) and Transmission Electron Microscopy (TEM). Moreover, the nanocomposite exhibited promising anticandidal activity against C. glabrata MTMA 19, C. glabrata MTMA 21 and C. tropicalis MTMA 24, where the inhibition zones were 15.3, 27 and 28 mm, respectively. Ultrastructure changes observed in nanocomposite-treated C. tropicalis demonstrated disruption of the cell wall which led to cell death. In conclusion, our results confirmed that the novel biosynthesized nanocomposite based on mycosynthesized CuONPs, nanostarch and nanochitosan is a promising anticandidal agent to fight multidrug-resistant Candida.

摘要

最近,全球范围内的抗菌药物耐药性不断增加,尤其是念珠菌感染。用于治疗念珠菌病的大多数抗真菌药物对大多数念珠菌物种都产生了耐药性。在本研究中,制备了一种基于真菌合成的氧化铜纳米粒子(CuONPs)、纳米淀粉和纳米壳聚糖的纳米复合材料。结果表明,从临床样本中分离出了 24 株念珠菌。此外,从其他抗真菌药物中选择了三种对念珠菌最具耐药性的菌株;这些选定的菌株经基因鉴定为 C. glabrata MTMA 19、C. glabrata MTMA 21 和 C. tropicalis MTMA 24。采用物理化学分析对制备的纳米复合材料进行了表征,包括紫外-可见光谱(Uv-Vis)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、能谱(EDX)和透射电子显微镜(TEM)。此外,该纳米复合材料对 C. glabrata MTMA 19、C. glabrata MTMA 21 和 C. tropicalis MTMA 24 表现出良好的抗念珠菌活性,抑制圈分别为 15.3、27 和 28mm。在纳米复合材料处理的 C. tropicalis 中观察到的超微结构变化表明细胞壁被破坏,导致细胞死亡。总之,我们的研究结果证实,基于真菌合成的 CuONPs、纳米淀粉和纳米壳聚糖的新型生物合成纳米复合材料是一种有前途的抗多药耐药性念珠菌的候选药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验