Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo, China.
Department of Surgery & Cancer, Imperial College London, London, UK.
Expert Rev Mol Diagn. 2023 Jun;23(6):485-494. doi: 10.1080/14737159.2023.2208751. Epub 2023 May 5.
Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in wet AMD. A recognized unmet need in AMD is the early detection of MA development.
Artificial Intelligence (AI) has demonstrated great impact in detection of retinal diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging modalities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great promise in identifying early MA using the new criteria in 2018.
There are few studies in which AI-OCT methods have been used to identify MA; however, results are very promising when compared to other imaging modalities. In this paper, we review the development and advances of ophthalmic imaging modalities and their combination with AI technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, cost-effective tool for the early detection and monitoring of the progression of MA in AMD.
年龄相关性黄斑变性(AMD)是全球范围内导致不可逆视力损害的主要原因。AMD 的终点,无论是干性还是湿性,都是黄斑萎缩(MA),其特征是 RPE 和光感受器的永久性丧失,无论是在干性 AMD 还是湿性 AMD 中。AMD 中一个公认的未满足的需求是早期检测 MA 的发展。
人工智能(AI)在检测视网膜疾病方面表现出了巨大的影响,尤其是其在分析眼科成像方式(如眼底彩色照相术(CFP)、眼底自发荧光(FAF)、近红外反射(NIR)和光学相干断层扫描(OCT))提供的大数据方面具有强大的能力。在这些方法中,OCT 已被证明在使用 2018 年新标准识别早期 MA 方面具有很大的潜力。
很少有研究使用 AI-OCT 方法来识别 MA;然而,与其他成像方式相比,结果非常有前景。在本文中,我们回顾了眼科成像方式及其与 AI 技术结合以检测 AMD 中的 MA 的发展和进展。此外,我们强调了 AI-OCT 作为一种客观、具有成本效益的工具在 AMD 中 MA 的早期检测和监测中的应用。