Suppr超能文献

基于融合提取特征和定制卷积神经网络模型的彩色眼底照片分类

Classification of Color Fundus Photographs Using Fusion Extracted Features and Customized CNN Models.

作者信息

Wang Jing-Zhe, Lu Nan-Han, Du Wei-Chang, Liu Kuo-Ying, Hsu Shih-Yen, Wang Chi-Yuan, Chen Yun-Ju, Chang Li-Ching, Twan Wen-Hung, Chen Tai-Been, Huang Yung-Hui

机构信息

Department of Information Engineering, I-Shou University, No. 8, Yida Road, Jiao-Su Village, Yan-Chao District, Kaohsiung City 84001, Taiwan.

Department of Medical Imaging and Radiological Science, I-Shou University, No. 8, Yida Road, Jiao-Su Village, Yan-Chao District, Kaohsiung City 82445, Taiwan.

出版信息

Healthcare (Basel). 2023 Aug 7;11(15):2228. doi: 10.3390/healthcare11152228.

Abstract

This study focuses on overcoming challenges in classifying eye diseases using color fundus photographs by leveraging deep learning techniques, aiming to enhance early detection and diagnosis accuracy. We utilized a dataset of 6392 color fundus photographs across eight disease categories, which was later augmented to 17,766 images. Five well-known convolutional neural networks (CNNs)-efficientnetb0, mobilenetv2, shufflenet, resnet50, and resnet101-and a custom-built CNN were integrated and trained on this dataset. Image sizes were standardized, and model performance was evaluated via accuracy, Kappa coefficient, and precision metrics. Shufflenet and efficientnetb0demonstrated strong performances, while our custom 17-layer CNN outperformed all with an accuracy of 0.930 and a Kappa coefficient of 0.920. Furthermore, we found that the fusion of image features with classical machine learning classifiers increased the performance, with Logistic Regression showcasing the best results. Our study highlights the potential of AI and deep learning models in accurately classifying eye diseases and demonstrates the efficacy of custom-built models and the fusion of deep learning and classical methods. Future work should focus on validating these methods across larger datasets and assessing their real-world applicability.

摘要

本研究聚焦于利用深度学习技术克服在通过彩色眼底照片对眼部疾病进行分类时所面临的挑战,旨在提高早期检测和诊断的准确性。我们使用了一个包含八个疾病类别的6392张彩色眼底照片的数据集,该数据集后来扩充到了17766张图像。我们将五个著名的卷积神经网络(CNN)——efficientnetb0、mobilenetv2、shufflenet、resnet50和resnet101——以及一个定制的CNN集成并在这个数据集上进行训练。图像大小被标准化,并且通过准确率、卡帕系数和精确率指标来评估模型性能。Shufflenet和efficientnetb0表现出强大的性能,而我们定制的17层CNN以0.930的准确率和0.920的卡帕系数优于所有其他模型。此外,我们发现将图像特征与经典机器学习分类器相融合可提高性能,其中逻辑回归展示出了最佳结果。我们的研究突出了人工智能和深度学习模型在准确分类眼部疾病方面的潜力,并证明了定制模型以及深度学习与经典方法相融合的有效性。未来的工作应专注于在更大的数据集上验证这些方法,并评估它们在现实世界中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d38/10418900/7b7e0e17a17c/healthcare-11-02228-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验