Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Phys Rev Lett. 2023 Apr 21;130(16):166702. doi: 10.1103/PhysRevLett.130.166702.
The anomalous Hall effect (AHE), a protocol of various low-power dissipation quantum phenomena and a fundamental precursor of intriguing topological phases of matter, is usually observed in ferromagnetic materials with an orthogonal configuration between the electric field, magnetization, and the Hall current. Here, based on the symmetry analysis, we find an unconventional AHE induced by the in-plane magnetic field (IPAHE) via the spin-canting effect in PT-symmetric antiferromagnetic (AFM) systems, featuring a linear dependence of magnetic field and 2π angle periodicity with a comparable magnitude to conventional AHE. We demonstrate the key findings in the known AFM Dirac semimetal CuMnAs and a new kind of AFM heterodimensional VS_{2}-VS superlattice with a nodal-line Fermi surface and, also, briefly discuss the experimental detection. Our Letter provides an efficient pathway for searching and/or designing realistic materials for a novel IPAHE that could greatly facilitate their application in AFM spintronic devices. National Science Foundation.
反常霍尔效应(AHE)是各种低功耗量子现象的协议,也是有趣的物质拓扑相的基本前兆,通常在电场、磁化和霍尔电流之间呈正交配置的铁磁材料中观察到。在这里,基于对称分析,我们通过 PT 对称反铁磁(AFM)系统中的自旋倾斜效应发现了一种由面内磁场(IPAHE)引起的非常规 AHE,其具有与传统 AHE 相当的磁场线性依赖性和 2π 角度周期性。我们在已知的 AFM 狄拉克半金属 CuMnAs 和具有节线费米面的新型 AFM 异维 VS2-VS 超晶格中证明了这些关键发现,并简要讨论了实验检测。我们的信提供了一种有效的途径来寻找和/或设计用于新型 IPAHE 的实际材料,这将极大地促进它们在 AFM 自旋电子器件中的应用。美国国家科学基金会。