Suppr超能文献

水溶液中电解质的活动、溶解度、输运性质和成核速率的模拟。

Simulations of activities, solubilities, transport properties, and nucleation rates for aqueous electrolyte solutions.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

J Chem Phys. 2020 Jul 7;153(1):010903. doi: 10.1063/5.0012102.

Abstract

This article reviews recent molecular simulation studies of "collective" properties of aqueous electrolyte solutions, specifically free energies and activity coefficients, solubilities, nucleation rates of crystals, and transport coefficients. These are important fundamental properties for biology and geoscience, but also relevant for many technological applications. Their determination from molecular-scale calculations requires large systems and long sampling times, as well as specialized sampling algorithms. As a result, such properties have not typically been taken into account during optimization of force field parameters; thus, they provide stringent tests for the transferability and range of applicability of proposed molecular models. There has been significant progress on simulation algorithms to enable the determination of these properties with good statistical uncertainties. Comparisons of simulation results to experimental data reveal deficiencies shared by many commonly used models. Moreover, there appear to exist specific tradeoffs within existing modeling frameworks so that good prediction of some properties is linked to poor prediction for specific other properties. For example, non-polarizable models that utilize full charges on the ions generally fail to predict accurately both activity coefficients and solubilities; the concentration dependence of viscosity and diffusivity for these models is also incorrect. Scaled-charge models improve the dynamic properties and could also perform well for solubilities but fail in the prediction of nucleation rates. Even models that do well at room temperature for some properties generally fail to capture their experimentally observed temperature dependence. The main conclusion from the present review is that qualitatively new physics will need to be incorporated in future models of electrolyte solutions to allow the description of collective properties for broad ranges of concentrations, temperatures, and solvent conditions.

摘要

本文综述了水相电解质溶液“集体”性质(特别是自由能和活度系数、溶解度、晶体成核速率和输运系数)的近期分子模拟研究进展。这些性质对生物学和地球科学很重要,对许多技术应用也很重要。从分子尺度的计算确定这些性质需要大系统和长采样时间,以及专门的采样算法。因此,在优化力场参数时通常不会考虑这些性质,因此,它们为提出的分子模型的可转移性和适用范围提供了严格的检验。在模拟算法方面已经取得了重大进展,可以用良好的统计不确定性来确定这些性质。将模拟结果与实验数据进行比较,揭示了许多常用模型存在的缺陷。此外,在现有的建模框架内似乎存在特定的权衡取舍,因此某些性质的良好预测与特定其他性质的预测不佳有关。例如,使用离子全电荷的非极化模型通常无法准确预测活度系数和溶解度;这些模型的粘度和扩散率的浓度依赖性也是不正确的。比例电荷模型改善了动力学性质,也可以很好地预测溶解度,但在预测成核速率方面表现不佳。即使某些模型在某些性质上在室温下表现良好,通常也无法捕捉到其实验观察到的温度依赖性。本综述的主要结论是,未来电解质溶液模型需要纳入新的物理性质,以便能够描述广泛浓度、温度和溶剂条件下的集体性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验