Suppr超能文献

肺腺癌患者转归改善的转录组特征的系统分析。

Systematic analysis of transcriptome signature for improving outcomes in lung adenocarcinoma.

机构信息

Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

出版信息

J Cancer Res Clin Oncol. 2023 Sep;149(11):8951-8968. doi: 10.1007/s00432-023-04814-y. Epub 2023 May 9.

Abstract

PURPOSE

The updated guidelines highlight gene expression-based multigene panel as a critical tool to assess overall survival (OS) and improve treatment for lung adenocarcinoma (LUAD) patients. Nevertheless, genome-wide expression signatures are still limited in real clinical utility because of insufficient data utilization, a lack of critical validation, and inapposite machine learning algorithms.

METHODS

2330 primary LUAD samples were enrolled from 11 independent cohorts. Seventy-six algorithm combinations based on ten machine learning algorithms were applied. A total of 108 published gene expression signatures were collected. Multiple pharmacogenomics databases and resources were utilized to identify precision therapeutic drugs.

RESULTS

We comprehensively developed a robust machine learning-derived genome-wide expression signature (RGS) according to stably OS-associated RNAs (OSRs). RGS was an independent risk element and remained robust and reproducible power by comparing it with general clinical parameters, molecular characteristics, and 108 published signatures. RGS-based stratification possessed different biological behaviors, molecular mechanisms, and immune microenvironment patterns. Integrating multiple databases and previous studies, we identified that alisertib was sensitive to the high-risk group, and RITA was sensitive to the low-risk group.

CONCLUSION

Our study offers an appealing platform to screen dismal prognosis LUAD patients to improve clinical outcomes by optimizing precision therapy.

摘要

目的

更新的指南强调了基于基因表达的多基因panel 是评估肺腺癌(LUAD)患者总生存期(OS)和改善治疗的重要工具。然而,由于数据利用不足、缺乏关键验证以及不适当的机器学习算法,全基因组表达谱在实际临床应用中仍然受到限制。

方法

从 11 个独立队列中招募了 2330 例原发性 LUAD 样本。应用了基于十种机器学习算法的 76 种算法组合。共收集了 108 个已发表的基因表达谱。利用多个药物基因组学数据库和资源来鉴定精准治疗药物。

结果

我们根据稳定的与 OS 相关的 RNA(OSR),全面开发了一种稳健的基于机器学习的全基因组表达谱(RGS)。RGS 是一个独立的风险因素,通过与一般临床参数、分子特征和 108 个已发表的特征进行比较,仍然具有强大且可重复的预测能力。基于 RGS 的分层具有不同的生物学行为、分子机制和免疫微环境模式。通过整合多个数据库和先前的研究,我们确定alisertib 对高危组敏感,而 RITA 对低危组敏感。

结论

我们的研究提供了一个有吸引力的平台,通过优化精准治疗,筛选预后不良的 LUAD 患者,以改善临床结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验